

UMA PROPOSTA DE CLASSIFICAÇÃO DE $BUS\ RAPID\ SYSTEM$ (BRS) UTILIZANDO SIMULAÇÃO

Duban Alejandro Mestizo Ayure

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia de Transportes, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia de Transportes.

Orientadores: Rômulo Dante Orrico Filho Lino Guimarães Marujo

> Rio de Janeiro Julho de 2014

UMA PROPOSTA DE CLASSIFICAÇÃO DE *BUS RAPID SYSTEM* (BRS) UTILIZANDO SIMULAÇÃO

Duban Alejandro Mestizo Ayure

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE TRANSPORTES.

Examinada por:	
	Prof. Rômulo Dante Orrico Filho, Dr. Ing.
	Prof. Lino Guimarães Marujo, D.Sc.
	Prof. Glaydston Mattos Ribeiro, D.Sc.
	Prof Cristiano Farias Almeida D Sc

RIO DE JANEIRO, RJ – BRASIL JULHO DE 2014 Ayure, Duban Alejandro Mestizo

Uma proposta de classificação de *Bus Rapid System* (BRS) utilizando simulação / Duban Alejandro Mestizo Ayure. – Rio de Janeiro: UFRJ/COPPE, 2014.

XV, 162 p.: il.; 29,7 cm.

Orientadores: Rômulo Dante Orrico Filho,

Lino Guimarães Marujo

Dissertação (mestrado) – UFRJ/ COPPE/ Programa de Engenharia de Transportes, 2014.

Referências Bibliográficas: p. 137-143.

1. Transporte público. 2. BRS 3. Simulação. 4. Faixas exclusivas. I. Orrico Filho, Rômulo *et al.* II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia de Transportes. III. Título.

A Deus, aos meus pais, Alejandro e Blanca, as minhas irmãs, Érica e Laura e a minha noiva Alejandra.

De coração.

AGRADECIMENTOS

A Deus pela minha existência, pela ajuda nas horas difíceis e por me manter sempre de pé.

Aos meus pais, Alejandro e Blanca, por terem me feito uma pessoa de bem e pelo apoio em minha travessia.

A minhas irmãs, Erica e Laura, que sempre têm me apoiado e alentado a seguir com meu trabalho.

A minha namorada Alejandra pelo seu apoio e paciência nesses anos em que decidi em aventurar nesta inesquecível e enriquecedora experiência.

Aos meus orientadores, Professor Rômulo Orrico Filho e Professor Lino Marujo, pela orientação e pelas críticas sempre positivas durante a elaboração da dissertação.

Ao Programa de Engenharia de Transportes – PET-COPPE/UFRJ e à universidade Federal do Rio de Janeiro – UFRJ pela oportunidade de desenvolvimento desta pesquisa.

À CAPES pelo apoio financeiro.

A todos os funcionários da secretaria do PET e do LAMIPET por terem sempre me ajudado com qualquer documentação.

Aos meus colegas e amigos de Mestrado que conheci no PET, Aline, Amanda, Lorena, Juliana Castro, Juliana Muniz, Herlander, Francisco, Matheus, Wellington, Renato e Jose Reymao, que foram de grande apoio durante a prática das disciplinas e também na realização desta pesquisa.

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Mestre em Ciências (M.Sc.)

UMA PROPOSTA DE CLASSIFICAÇÃO DE BUS RAPID SYSTEM (BRS) UTILIZANDO

SIMULAÇÃO

Duban Alejandro Mestizo Ayure

Julho/2014

Orientadores: Rômulo Dante Orrico Filho

Lino Guimarães Marujo

Programa: Engenharia de Transportes

O incentivo para a utilização de modos de transporte mais sustentáveis, assim como a

promoção do transporte público, representam importantes ferramentas para a melhoria no

gerenciamento da mobilidade das cidades. Neste contexto, o Bus Rapid Service (BRS) se

destaca como uma nova adaptação ao conceito de priorização do transporte público coletivo

em faixas exclusivas. Diante disto, esta dissertação tem como objetivo apresentar e explicar o

funcionamento e a operação do BRS e também sua relação com os diferentes sistemas de

transportes, além de destacar e analisar as diferentes variações desses tipos de sistemas,

utilizando a simulação como ferramenta de análise. Neste processo, observa-se que o BRS é

classificado e enquadrado na categoria C (VUCHIC, 1981). Conclui-se que a variedade de

situações infraestruturais e operacionais dos sistemas de ônibus, fato que os BRS trouxeram à

tona, sinaliza a pouca utilidade de estarem reunidos nessa única categoria, o que constata a

necessidade de subdivisão da categoria C em subcategorias (p.ex. C1 a Cn), levando-se em

conta o tipo de interferência advinda de outros veículos, o tipo de infraestrutura disponível e

as regras de operação. Também se demonstra que a simulação está voltada para o estudo

eficiente das diferentes alternativas do BRS que foram observadas.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the requirements

for the degree of Master of Science (M.Sc.)

A PROPOSED CLASSIFICATION OF THE BUS RAPID SYSTEM (BRS) USING

SIMULATION

Duban Alejandro Mestizo Ayure

July/2014

Advisors: Rômulo Dante Orrico Filho

Lino Guimarães Marujo

Department: Transport Engineering

The incentive for the use of more sustainable modes of transport, as well as the

promotion of public transport, are important tools for improving the management of mobility

in cities. In this context, the Bus Rapid Service (BRS) stands as a new adaptation of the

concept of prioritization of public transportation in dedicated lanes. Therefore, this work aims

to present and explain the functioning and operation of the BRS and also its relationship with

different transport systems, as well as highlight and analyze the different variations of these

types of systems using the simulation as an analysis tool. In this process, it is observed that

the BRS is classified and framed as category C (VUCHIC, 1981). We conclude that the

variety of infrastructural and operational situations of bus systems, the fact that the BRS

brought to light, signals the little use of they stay together in this single category, which

identifies the need for subdivision of the category into subcategories C (C1 to Cn), taking into

account the interference arising from other vehicles, the type of infrastructure available and

operating rules. It is also demonstrated that the simulation is focused on the efficient study of

different alternatives of BRS that were observed.

vii

SUMÁRIO

1 I	NTRODUÇÃO	1
1.1	CARACTERIZAÇÃO DO PROBLEMA	2
1.2	JUSTIFICATIVA	4
1.3	PREMISSA	6
1.4	OBJETIVOS	6
1.4.1	Objetivo geral	6
1.4.2	Objetivos específicos	6
1.5	METODOLOGIA GERAL DA PESQUISA	7
1.6	ESTRUTURA DA PESQUISA	8
2 (CARACTERIZAÇÃO E CLASSIFICAÇÃO DOS DIFERENTES MODOS DE	
TRAN	NSPORTE	11
2.1	CONSIDERAÇÕES INICIAIS	11
2.2	A PRIORIDADE NOS SISTEMAS DE TRANSPORTE E SUA	
CLAS	SSIFICAÇÃO METODOLÓGICA	12
2.2.1	Categoria da via ou direito de passagem (Rigth-of-way)	13
2.2.2	Tipo de tecnologia utilizada	14
2.2.3	Tipo de serviço	14
2.3	MODOS PRIORITÁRIOS DE TRANSPORTE	15
2.3.1	Metrô	15
2.3.2	O Trem Suburbano	16
2.3.3	BRT – Bus Rapid Transit	16
2.3.4	BRS – Bus Rapid Service	17
2.4	OUTROS SISTEMAS COM PRIORIDADE	17
2.4.1	Bonde	17
2.4.2	VLT – Veículo leve sobre trilhos	18
2.4.3	Monotrilho	18
2.5	ELEMENTOS DE SÍNTESE	19
2.6	COMPLEXIDADE NO TRANSPORTE PRIORITÁRIO COMO ÍNDICE DE)
DESE	EMPENHO.	20
	Avaliação metodológica da complexidade dos diferentes modos de transporte	
2.7	CONSIDERAÇÕES DO CAPÍTULO	28

3]	MEDIDAS DE PRIORIDADE NO TRANSPORTE PÚBLICO COLETIVO PARA	
ÔNIE	BUS	30
3.1	ANTECEDENTES DAS MEDIDAS DE PRIORIDADE	30
3.2	MEDIDAS DE TRATAMENTO PREFERENCIAL	32
3.3	SISTEMAS DE PRIORIZAÇÃO DO ÔNIBUS	37
3.4	FAIXAS EXCLUSIVAS	39
3.4.1	Elementos principais de uma faixa exclusiva	40
3.4.2	Interferências dos veículos nas faixas exclusivas	43
3.5	EXEMPLOS DE UM SISTEMA PRIORITÁRIO DE TRANSPORTE PÚBLIC	O
– O I	3RS	46
3.5.1	O BRS no Rio de Janeiro	46
3.5.2	Resultados da implantação	53
3.5.3	Fortaleza BRSFOR (Bus Rapid Service de Fortaleza)	54
3.5.4	Discussão	55
3.6	PROPOSTA DE SUBCLASSIFICAÇÃO DOS SISTEMAS DE FAIXAS	
EXC	LUSIVAS SEGUNDO SEU NÍVEL DE PRIORIDADE E INTERFERÊNCIAS .	57
3.7	SÍNTESES DO CAPÍTULO	58
4	A SIMULAÇÃO COMO FERRAMENTA DE ANALISES	60
4.1	TEORIAS DE MODELOS DE TRÁFEGO	60
4.1.1	Teoria Macroscópica	61
4.1.2	Teoria Mesoscópica	62
4.1.3	Teoria Microscópica	63
4.1.4	Síntese comparativa dos modelos apresentados	65
4.2	METODOLOGIA NO PROCESSO DE SIMULAÇÃO MICROSCÓPICA	66
4.2.1	Concepção do problema e dos objetivos da simulação	66
4.2.2	Levantamento e codificação de dados	67
4.2.3	Calibração e validação do modelo	69
4.2.4	Análises de sensibilidade e tratamento dos dados	75
4.2.5	Simulação dos cenários de microsimulação	75
4.2.6	Analises resultados e Indicadores de desempenho na simulação	75
4.3	ESCOLHA DO MODELO A UTILIZAR NA PESQUISA	78

4.4	SIMULADOR VISSIM	79
4.5	CONSIDERAÇÕES FINAIS	81
5 E	ESTUDO DE CASO	83
5.1	PRIMEIRA PARTE - CLASSIFICAÇÃO DO BRS SOB O PONTO DE VIST	Ά
DO ÍN	NDICE DE COMPLEXIDADE	83
5.1.1	Resultado da coleta dos dados	83
5.1.2	Avaliação dos resultados	89
5.1.3	Nível de complexidade do BRS e seu direito de passagem	91
5.1.4	Considerações finais	94
5.2	SEGUNDA PARTE - ANÁLISES DOS DIFERENTES CENÁRIOS DO BRS	
CASC	O COPACABANA, RIO DE JANEIRO	94
5.2.1	Concepção do problema e dos objetivos da simulação	94
5.2.2	Descrição geral da área de estudo – Copacabana, Rio de Janeiro	95
5.2.3	Cenários propostos	98
5.2.4	Levantamento e codificação dos dados	98
5.2.5	Dados estatísticos para codificação e construção da rede	99
5.2.6	Dados dinâmicos ou de demanda da zona se estudo	
5.2.7	Considerações na construção do modelo	.119
5.2.8	Processo de calibração e validação	.120
5.2.9	Análises de resultados dos diferentes cenários	.125
6 C	CONCLUSÕES E RECOMENDAÇÕES	.133
REFE	RÊNCIAS BIBLIOGRÁFICAS	137
APÊN	IDICES	144
	NDICE A - RESULTADOS DETALHADOS DA ANÁLISE ESTATÍSTICA E	
	IÂNCIAS (ANOVA-FATOR ÚNICO) DA AMOSTRAGEM DE TEMPOS DE	
	SEM ÔNIBUS	144
	NDICE B - RESULTADOS DA SIMULAÇÃO - INDICADORES DE	, 1 1 1
	EMPENHO DA REDE	145
	XOS	
ANEX	XO A – CONTAGENS DE FLUXO VEICULAR CET-RIO	. 149

ANEXO B - AVALIAÇÃO DA COMPLEXIDADE NOS MEIOS DE T	RANSPORTE -
FORMULÁRIO DA PESQUISA	
AVALIAÇÃO DA COMPLEXIDADE NOS MEIOS DE TRANSPORTE	155

ÍNDICE DE FIGURAS

Figura 1-1 Metodologia geral da pesquisa	8
Figura 2-1 Monotrilho	19
Figura 2-2 Capacidade de passageiros transportados por modo de transporte	21
Figura 3-1 Faixas Laterais Exclusivas	38
Figura 3-2 Faixas exclusivas junto ao canteiro central	38
Figura 3-3 BRS implantados Rio de Janeiro	47
Figura 3-4 Distribuição das linhas nos diferentes tipos de pontos de parada do o BRS	49
Figura 3-5 Mobiliário urbano, pontos de parada BRS	49
Figura 3-6 Sinalização Horizontal Corredor BRS	52
Figura 3-7 Sinalização vertical corredor BRS	52
Figura 3-8 Percepção do BRS antes e depois da implantação	54
Figura 3-9 Distribuição do sistema Preferencial em cada pista	54
Figura 3-10 Comparação da velocidade antes e depois da implementação do sistema	55
Figura 4-1 Modelos de estudo de trafego e transporte	61
Figura 4-2 Processo de calibração	70
Figura 5-1 Distribuição de gênero da amostra	84
Figura 5-2 Grau de instrução	84
Figura 5-3 Atributo Confiabilidade	85
Figura 5-4 Atributo Rapidez	86
Figura 5-5 Atributo Conforto	86
Figura 5-6 Atributo Acessibilidade	87
Figura 5-7 Atributo Segurança	87
Figura 5-8 Atributo Nível de Investimento	88
Figura 5-9 Resumo da avaliação de cada atributo segundo os dados coletados	89
Figura 5-10 Gráfico de tendência da complexidade em função da Capacidade	91
Figura 5-11 Esquema de comportamento da capacidade v.s. complexidade e tipo de dire	ito de
passagem	92
Figura 5-12 Localização do BRS	93
Figura 5-13 Localização vias principais Copacabana	96
Figura 5-14 Distribuição de faixas para o BRS	96

Figura 5-15 Rede do modelo de simulação Copacabana, Rio de janeiro	99
Figura 5-16 Pontos de parada de ônibus na Avenida Nossa Senhora de Copacabana	103
Figura 5-17 Aplicativo da web "vadeonibus"	106
Figura 5-18 Fluxo horário de veículos UCP na interseção	109
Figura 5-19 Distribuição veicular da Avenida Nossa Senhora de Copacabana com a Rua	
Figueiredo de Magalhães	110
Figura 5-20 Fluxo horário e distribuição percentual no dia do ponto de coleta de dados en	ntre a
Rua Figueiredo de Magalhaes e Rua Siqueira Campos,	111
Figura 5-21 Esquema da Interseção da Avenida Nossa Senhora de Copacabana com Rua	
Republica do Peru	112
Figura 5-22 Distribuição horária da corrente veicular por tipo de fluxo Avenida Nossa	
Senhora de Copacabana com Rua República de Peru	112
Figura 5-23 Esquema dos fluxos estudados na interseção da Avenida Nossa Senhora e	
Copacabana com Rua Francisco Sá	114
Figura 5-24 Esquemas dos fluxos no cruzamento da Av. Nossa Senhora de Copacabana e	e a
Rua Prado Junior	116
Figura 5-25 Localização pontos de coleta de dados	117
Figura 5-26 Restrição de faixa para veículos não autorizados no VISSIM	119
Figura 5-27 Gráfico percentual comparativo dos indicadores obtidos por cenário	126
Figura 5-28 Distribuição veicular por cada cenário estudado	128
Figura 5-29 Tempo de viagem/veículo para cada cenário simulado em segundos	128
Figura 5-30 Atraso médio por veículo em segundos	129
Figura 5-31 Percentuais de velocidade média de operação.	131
Figura 5-32 Velocidade média de operação.	131
Figura 5.33 Velocidade de operação comente ônibus RRS, com cenário em fluvo livre	132

ÍNDICE DE TABELAS

Tabela 2-1 Indicadores operacionais sistemas de transporte	19
Tabela 2-2 Variáveis de desempenho Modos de transporte	21
Tabela 2-3 Fatores de qualidade do transporte para avaliação do nível de serviço	22
Tabela 2-4 Custos de execução e custos de implantação.	23
Tabela 2-5 Tabela de avaliação Confiabilidade	24
Tabela 2-6 Avaliação da velocidade	24
Tabela 2-7 Indicadores de conforto densidade de ocupação e tempo de viagem	25
Tabela 2-8 Indicadores de acessibilidade locacional	25
Tabela 2-9 Indicadores de nível de investimento nos sistemas de transporte	26
Tabela 2-10 Indicador do nível de segurança	26
Tabela 2-11 Exemplo da qualificação por pesos dos atributos estudados	
Tabela 3-1 Estabelecimento inicial de ônibus em faixas exclusivas em algumas cidades	31
Tabela 3-2 Medidas de prioridade no transporte público	35
Tabela 3-3 Níveis de segregação e tipos de tratamento/operação da via	37
Tabela 3-4 Diferentes configurações do sistema de faixas exclusivas	39
Tabela 3-5 Locais do BRS no Rio de Janeiro	47
Tabela 3-6 Resumo de Pontos de parada Corredores BRS	50
Tabela 3-7 Quantidade de linhas e redução da frota no BRS	51
Tabela 3-8 Caracterização da demanda e oferta no corredor	55
Tabela 3-9 Alternativas de subclassificação de faixas exclusivas por interferências	57
Tabela 4-1 Resumo comparativo Modelos de estudo do trafego veicular	65
Tabela 4-2 Resumo de dados necessários para a elaboração de modelo de microssimulação	o.68
Tabela 4-3 Critérios de validação de modelos de microssimulação	72
Tabela 4-4 Critérios de validação e calibração do modelo	73
Tabela 4-5 Indicadores de desempenho recomendados como resultado do processo de	
simulação.	76
Tabela 4-6 Nível de serviço	77
Tabela 5-1 Pesos dos atributos	88
Tabela 5-2 Cálculo da COMPLEXIDADE de alguns sistemas de transporte	90
Tabela 5-3 Capacidade e Complexidade sistemas de Transporte	90

Tabela 5-4 Síntese do Fluxo Máximo de Passageiros em Faixas Exclusivas de Ônibus de	
algumas cidades9	92
Tabela 5-5 Características Avenida Nossa Senhora de Copacabana	€7
Tabela 5-6 Cenários utilizados no estudo.	98
Tabela 5-7 Fontes de Informação requerida para alimentar o modelo de micro simulação9	98
Tabela 5-8 Características das ruas que apresentam interseção com a Avenida Nossa Senhora	a
de Copacabana)0
Tabela 5-9 Nº de garagens sobre o acostamento à direita da Avenida Nossa Senhora de	
Copacabana10)1
Tabela 5-10 Pontos de parada de Ônibus na Avenida Nossa Senhora de Copacabana 10)3
Tabela 5-11 Linhas de transporte público na Avenida Nossa Senhora de Copacabana 10)4
Tabela 5-12 Planos semafóricos das interseções sobre a Avenida Nossa Senhora de	
Copacabana10)6
Tabela 5-13 Dados de fluxo veicular e tempos de viagem obtidos para o modelo10)8
Tabela 5-14 Fatores de equivalência por unidade de carros de passeio (UCP)10)8
Tabela 5-15 Fluxo de volumes veiculares coletados em campo, Rua Francisco Sá com Av.	
Nossa Senhora de Copacabana	14
Tabela 5-16 Distribuição veicular dos fluxos no cruzamento	15
Tabela 5-17 Percentual de dados de entrada para o VISSIM	15
Tabela 5-18 Fluxos horários no período pico de 8:15-9:15 da Av Nossa Senhora de	
Copacabana com a Rua Prado Junior11	16
Tabela 5-19 Tempos de viagem por ônibus na Avenida Nossa Senhora de Copacabana entre	
Rua Francisco Sá e Avenida Princesa Isabel	18
Tabela 5-20 Distribuições dos tipos de veículo no simulador	20
Tabela 5-21 Avaliação do modelo teste GEH	21
Tabela 5-22 Critério de aceitação fr avaliação e calibração	21
Tabela 5-23 Teste ANOVA para tempos de viagem médios	22
Tabela 5-24 Teste estatístico cenário atual (Cenário 4)	24
Tabela 5-25 Resumo do teste de significância da velocidade média de operação para cada	
cenário	25
Tabela 5-26 Resumo de indicadores de desempenho globais da rede por cenário	26
Tabela 5-27 Considerações de erro na simulação	30

1 INTRODUÇÃO

Com o contínuo e inevitável crescimento das cidades, os modos de transporte têm a necessidade de expandir-se concomitante ao aumento crescente da população, surgindo assim novos sistemas de transporte, tanto motorizado como não motorizado, e incrementando-se a frota de veículos particulares. Nas últimas décadas, observa-se que o crescimento populacional tem sido inferior ao crescimento da frota de veículos no país. De acordo com dados do Denatran (2010), a frota de veículos apresentou crescimento de 8,4% no Brasil, totalizando 64.817.974 veículos em 2010. Segundo dados do Censo Demográfico (IBGE, 2010), o crescimento médio anual da população brasileira tem sido de 1,17% ao ano, o que corresponde a 190.732.694 brasileiros em 2010. Esse aumento significativo da frota gera impactos na operação e no planejamento do transporte público tradicional e no transporte individual, tais como: excesso da oferta, perda no nível de serviço, desigualdade no custo das tarifas, aumento no tempo dedicado às viagens e congestionamento, apenas alguns dos malefícios que afetam diretamente aos usuários.

Neste contexto o incentivo para a utilização de meios mais sustentáveis de transporte, tal como a promoção do transporte público, são importantes ferramentas para a melhoria no gerenciamento da mobilidade das cidades.

De acordo com Almeida Junior *et al.* (2010), o sistema coletivo de ônibus desempenha um papel fundamental no deslocamento diário da população e de seus visitantes, garantindo a mobilidade e a acessibilidade. Esse papel estruturador do transporte coletivo por ônibus é ainda mais importante nas cidades onde o sistema viário encontra-se saturado. Segundo os autores, muitos usuários deixam de utilizar o transporte público por não terem conhecimento sobre as possibilidades de sua utilização para a realização de seus deslocamentos, optando pelo transporte individual e contribuindo para o aumento dos índices de congestionamento.

Com base nisso, várias são as medidas utilizadas para incentivar o uso do transporte coletivo em detrimento do automóvel particular, uma delas é o *Bus Rapid Service* (BRS), uma nova adaptação ao conceito de priorização do transporte público coletivo em faixas exclusivas, tecnologia similar aos chamados *Bus Rapid Transit* (BRT), com diferenciais em sua infraestrutura, tipos de veículo, nível de abrangência e nas regras de operação.

O BRS surgiu inicialmente em 2011, na Cidade de Rio de Janeiro, como uma proposta para a melhoria do transporte público de passageiros no bairro de Copacabana, zona sul da cidade. O modelo tem como um dos objetivos a redução dos tempos de viagens e a reorganização da frota de ônibus existente, refletindo na melhoria do tráfego e no gerenciamento da mobilidade, beneficiando diretamente os usuários do sistema.

Na ocasião da implantação desses sistemas, no entanto, não se teve uma estimativa precisa do impacto que terá na operação do sistema atual. Além disso, se desconhecem os diferentes tipos de sistemas exclusivos BRS a serem implantados para cada caso, o que poderá depender do estado e localização de cada infraestrutura. Essa incerteza pode repercutir em um erro na execução dos diferentes projetos, gerando gastos desnecessários de recursos. Razão pela qual é necessária a utilização de ferramentas de análise que ajudem a prever como será o comportamento desse tipo de sistema antes de sua implantação.

A modelagem torna-se, portanto, uma ferramenta relevante na análise estratégica, tática e operacional do transporte, que tem como objetivo contribuir com o planejamento das cidades em curto, médio e longo prazos, visando a integrar os diferentes sistemas de transporte, trazendo diretamente benefícios à população.

A partir da revisão bibliográfica, existem diversos trabalhos que utilizam a modelagem para entender como será o comportamento dos sistemas exclusivos de transporte por ônibus, especialmente sobre os BRT, entretanto, poucos tratam o tema das faixas simples devido a seu desuso. Com a retomada desse conceito, especialmente no BRS, se fez necessária a abordagem da simulação para o estudo desses tipos de sistemas.

Neste contexto, o presente trabalho tem como finalidade contribuir com avanços nas análises das diferentes variações dos sistemas de faixas exclusivas para ônibus tipo BRS encontradas na literatura, utilizando a simulação como instrumento de análise e visando a qualificar e quantificar as vantagens geradas a partir da implantação desse tipo de sistema. Além de reconhecer e analisar o conceito do BRS e sua relação com os outros sistemas de transporte.

1.1 CARACTERIZAÇÃO DO PROBLEMA

O impacto da implantação de infraestruturas e políticas de transporte que oferecem medidas de prioridade ao ônibus, com o objeto de mitigar conflitos e ajudar no gerenciamento da mobilidade, tem consequências diretas na caracterização das viagens, na operação do

transporte, nos tempos dedicados às viagens, na alteração na velocidade de operação, entre outras. Uma dessas medidas que vem sendo implantadas na Cidade de Rio de Janeiro é o BRS, que procura melhorar a qualidade de vida dos usuários e a mobilidade em alguns locais da cidade.

O desafio de se projetar essas medidas de prioridade ao transporte público coletivo é grande, em parte devido aos interesses e agentes envolvidos na ação e às reais vantagens e desvantagens que esses sistemas acrescentam à mobilidade urbana.

As dificuldades das análises de forma mais crítica e clara do impacto refletem-se muitas vezes após a implantação desses sistemas ou de medidas de prioridade ao transporte, o que nem sempre é o esperado, gerando uma perda de esforços e recursos que afeta diretamente o usuário.

No momento da implantação desses sistemas de transporte não se tem uma estimativa precisa do impacto gerado na operação do sistema atual. E também não há conhecimento do tipo adequado de BRS para cada caso, visto que esse aspecto depende do estado e localização de cada infraestrutura.

Com o passar dos anos foram, foram desenvolvidos diferentes tipos de programas computacionais com a capacidade de simular e analisar um problema antes de serem executados fisicamente. Essas ferramentas são comumente utilizadas nas análises de tráfego e transporte urbano em níveis de micro, média e macrossimulação, os quais são capazes de simular modelos complexos.

Neste sentido, a simulação pode se caracterizar como um importante componente no processo de planejamento desses sistemas, sendo possível antecipar problemáticas, reduzir custos e evitar efeitos colaterais com consequências mais complexas de resolver do que o problema inicial (MOREIRA, 2005). No entanto, a utilização da simulação em um ambiente em que convivem os sistemas prioritários de transporte e o transporte individual não é muito estudado, especificamente no caso do BRS devido a seu recente sucesso.

Diante do exposto, entende-se que, na implantação de sistemas exclusivos de transporte BRS, podem se apresentados alguns problemas ou conflitos quando não é realizada uma adequada avaliação desses sistemas, devido ao desconhecimento das diferentes alternativas ou tipos de BRS que podem existir. Assim como a falta de análises mais detalhadas dos possíveis

impactos no curto, médio e longo prazo que essas alternativas poderiam oferecer, o que pode ser retificado com a utilização da simulação como ferramenta de análise.

1.2 JUSTIFICATIVA

Devido ao incremento da população nas grandes cidades, emerge uma quantidade importante de demanda de viagens, produto das atividades representativas do seu desenvolvimento, tais como: saúde, comércio, trabalho e estudo. Essa demanda automaticamente gera um aumento na oferta dos diferentes modos de transporte, sendo o trem, o metrô, os veículos particulares e os ônibus componentes importantes dessa dinâmica. No entanto, o ônibus tem se caracterizado por ser uns dos sistemas mais utilizados pela população na alocação das viagens geradas, devido a sua ampla cobertura urbana e oferta de veículos.

A interação dos ônibus com os veículos privados nas grandes cidades produz alterações relevantes na mobilidade, gerando problemas de congestionamento e tráfego, assim como deficiência no nível de serviço, o que se agrava com o rápido aumento dos índices de motorização por meio do transporte individual devido à facilidade de aquisição.

Neste contexto, torna-se oportuno destacar que a maior parte das viagens é realizada por ônibus, o qual, segundo Molinero & Arellano (2002), é considerado mais eficiente que o veículo particular, devido a sua capacidade de transportar maior quantidade de usuários e ocupar menos espaço que o automóvel privado. Além disso, esse sistema presta um serviço básico a toda população a um menor custo e um menor impacto por passageiro/quilômetro.

De acordo com NTU & Sedu (2002), "o desenvolvimento do transporte coletivo é visto como uma estratégia eficaz para resolver os problemas da mobilidade urbana, melhorar a qualidade de vida e aumentar a eficiência da economia urbana". Ou seja, a priorização do transporte público nos diferentes modos de transporte mostra-se como uma ferramenta de grande valor na evolução do transporte tradicional, procurando mitigar alguns dos problemas de mobilidade presentes nesses sistemas.

O Highway Capacity Manual (HCM) ilustra algumas medidas de prioridade para o ônibus, procurando mitigar a problemática gerada, tais como: sinais de trânsito com prioridade, queue

by-pass¹, queue jump², curb extensions³, bording island⁴, restrição no estacionamento, realocação dos pontos de ônibus, exceção em giros proibidos e faixas exclusivas para ônibus, entre outras.

Entre os principais benefícios que se podem obter em um tratamento preferencial, tem-se: incremento na velocidade de operação, incremento na sua confiabilidade, melhoria na imagem do serviço de ônibus, redução dos custos de operação, melhoria na segurança, redução dos tempos de viagem e melhoria no incentivo da utilização do transporte público.

A abordagem deste trabalho se enquadra nas faixas exclusivas de ônibus especificamente com a implantação do BRS, que na realidade é o nome adotado para um sistema que utiliza medidas de priorização do transporte público (faixas exclusivas para ônibus). Em outras palavras, pode-se entender como um sistema intermediário entre o BRT e o tráfego de ônibus convencional (FETRANSPOR, 2011).

A implantação desses tipos de sistemas, no entanto, requerem cada vez mais análises precisas por parte dos órgãos gestores, visando a aperfeiçoar recursos e a mitigar problemas. Segundo Moreira (2005), esses problemas em sua maioria são muito complexos e exigem grande habilidade por parte dos projetistas que lidam com muitas variáveis e acabam procurando soluções pelo método da tentativa e erro. O que gera uma perda de esforços e recursos, portanto, é necessário estudar metodologias de avaliação mais precisas e rápidas. Por isso, a simulação torna-se um instrumento importante na análise desse tipo de problemas que envolvem grande número de variáveis e parâmetros mais facilmente calculáveis do que com as metodologias de análise normalmente utilizadas.

-

¹ Medida de tráfego que procura fornecer una faixa prioritária para ônibus, principalmente nas interseções.

² Essa medida consiste em uma faixa lateral à direita na interseção prioritária para ônibus.

³ É uma extensão da calçada onde geralmente há um acostamento destinado para o estacionamento na via com a finalidade de servir como ponto de parada dos ônibus sem entrar na zona do estacionamento.

⁴ Medida utilizada para separar faixas no mesmo sentido, onde a faixa da esquerda tem problemas de trânsito e atividade significativa de estacionamento e assim o transporte público pode circular pela faixa da direita.

1.3 PREMISSA

Esta dissertação tem como premissa básica que a avaliação preliminar da implantação de sistemas de transporte exclusivo para ônibus tipo BRS produz efeitos favoráveis na mobilidade da cidade. No entanto, a variação em suas regras de operação, a interferência com outros veículos e a utilização de diferentes tipos de infraestrutura podem trazer benefícios ou limitações, sendo a utilização de ferramentas de simulação uma forma de observar esses cenários.

1.4 OBJETIVOS

1.4.1 Objetivo Geral

O objetivo deste trabalho é contribuir para a avaliação dos impactos gerados a partir da implantação de medidas de priorização do transporte público coletivo para ônibus, no caso específico do BRS, utilizando ferramentas de simulação como um instrumento de análise que permite identificar possíveis interferências de outros veículos

Adicionalmente, propor um desdobramento da classificação dos serviços de transportes coletivos usualmente reunidos no Nível C, em função das características reais da prioridade na via (ou direito de passagem) focadas no BRS.

1.4.2 OBJETIVOS ESPECÍFICOS

Nesta dissertação, busca-se avaliar os seguintes objetivos específicos:

- Entender o conceito do BRS, apresentando seus componentes, operação e fiscalização, vantagens e desvantagens, assim como sua relação com os diferentes sistemas de transporte;
- Comparar o impacto operacional dos diferentes casos do BRS implantados na Cidade de Rio de Janeiro (Copacabana, Leblon, Ipanema e Av. Presidente Vargas) com a finalidade de entender seu comportamento;
- Qualificar e quantificar as vantagens geradas a partir da implantação de sistemas BRS;
- Classificar os diferentes sistemas de transporte exclusivo por ônibus, levando em consideração o nível de interferência e seu nível de prioridade, especificamente o caso do BRS.

1.5 METODOLOGIA GERAL DA PESQUISA

A bibliográfica faz parte relevante da metodologia desta pesquisa e tem como objetivo determinar os elementos fundamentais na implantação de medidas prioritárias do transporte público, assim como metodologias de avaliação desses tipos de sistemas. Outro aspecto a ser considerado está relacionado com a literatura voltada para as análises exploratórias do caso do BRS, Rio de Janeiro, seu esquema de operação, as vantagens e desvantagens e a comparação com os diferentes modos de transporte (metrô, BRT; VLT, trem, monotrilho, entre outros) com a finalidade de poder classificá-lo e categorizá-lo.

A pesquisa aborda os conceitos das medidas de tratamento preferencial focadas no transporte exclusivo por ônibus, especificamente o caso do BRS, o qual é analisado por meio da comparação, entre os diferentes casos do BRS (Copacabana, Ipanema, Leblon e Av. Presidente Vargas). E identifica sua infraestrutura e os indicadores de desempenho, buscando semelhanças e diferenças possíveis de serem aplicadas ao objeto de estudo.

Também são abordados conceitos de simulação orientada ao transporte, visando a entender os conceitos essenciais desse campo. Desta maneira, se determinam os modelos a serem adotados e consequentemente os dados a serem pesquisados para a aplicação ao estudo de caso, o qual é baseado no estudo do BRS de Copacabana-Rio de Janeiro.

Outra etapa desenvolvida na pesquisa refere-se à caracterização da área de estudo, levando em consideração o padrão das viagens, o uso do solo e a operação do transporte, voltados para o gerenciamento da mobilidade.

Para finalizar, se aplicaram as metodologias produto da revisão bibliográfica dividida em duas partes: a primeira focada na classificação do BRS de maneira global e a segunda, na aplicação de um modelo de simulação aplicado aos cenários criados para avaliação dos sistemas de faixas exclusivas BRS. Consequentemente se apresentaram as conclusões e as considerações finais, assim como uma proposta para trabalhos futuros. A Figura 1-1 apresenta o esquema geral dessa metodologia.

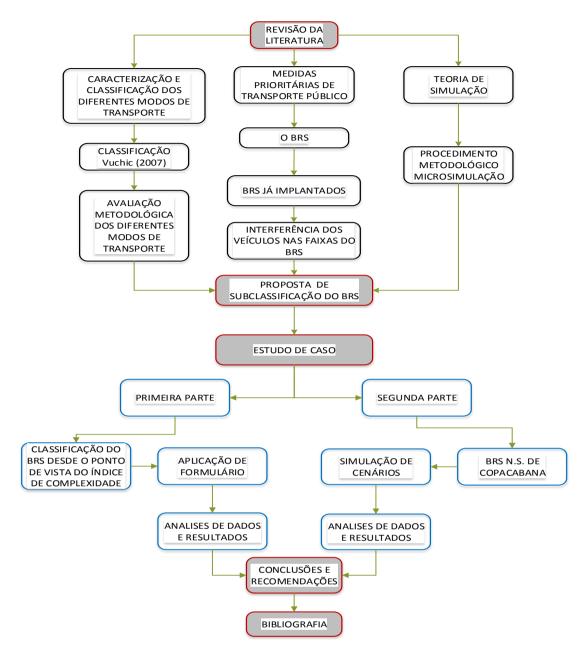


Figura 1-1 Metodologia geral da pesquisa

1.6 ESTRUTURA DA PESQUISA

Além da seção introdutória no Capítulo 1 onde se relatam e apresentam a problemática, a justificativa, os objetivos e a estrutura metodológica da pesquisa, esta dissertação possui mais 6 capítulos. O capítulo 2 apresenta uma revisão dos diferentes sistemas de transporte prioritários com maior relevância na atualidade, dando especial interesse aos sistemas exclusivos de transporte público por ônibus, considerando como exemplo o BRS, assim como

algumas análises das teorias de classificação dos diferentes modos de transporte. Neste sentido, adotou-se a metodologia de Vuchic (1981) para classificar o transporte público em seu direito de passagem (*Rigth-of-way*) A, B e C. Para isso, foi desenvolvida uma metodologia qualitativa e quantitativa para enquadrar o BRS nessa classificação, levando em consideração o nível de complexidade e capacidade de cada sistema, pois não é exatamente definida sua relação com os outros modos de transporte. Diante disso, as análises propõem o enquadramento do BRS na classificação tipo C com potencial mudança ao tipo de categoria B, o qual depende do caso específico do lugar de implantação e do tipo de tecnologia e inovações a ser utilizado na operação desse sistema.

O Capítulo 3 discute detalhadamente as diferentes alternativas e medidas de prioridade no transporte público, focando no transporte prioritário por ônibus (o BRS), discutindo suas diferentes características por meio de comparações de alguns casos já implantados, com a finalidade de poder subclassificá-los com maior detalhe, seguindo a metodologia de Vuchic (1981), apresentada no capítulo anterior. Como consequência dessas análises, foi proposta uma classificação dos sistemas de ônibus exclusivos no Capítulo 4, segundo seu nível de prioridade e interferência com outros veículos e infraestruturas utilizadas. Isso poderá servir como ferramenta para o processo de planejamento das cidades com problemas de mobilidade, especificamente as que procuram alternativas econômicas com baixos níveis de investimento, ajudando na mitigação desse problema. Essas classificações serão tratadas como os cenários de análises.

No Capítulo 5 é feita uma revisão teórica conceitual da literatura disponível sobre metodologias de simulação do tráfego e transporte com o objetivo de tratar as alternativas apresentadas no quarto capítulo, utilizando a simulação como ferramenta de análise. Como produto desse capítulo, apresenta-se a metodologia do modelo de simulação a ser utilizado na pesquisa, assim como seu procedimento de avaliação e calibração do modelo, finalizando com a coleta e tratamento dos dados.

No Capítulo 5 apresenta-se o estudo de caso dividido em duas partes: na primeira foi realizada uma pesquisa por meio de entrevistas, seguindo a metodologia adotada e citada no Capítulo 2, produto da qual se apresenta o relacionamento do BRS com os outros modos de transporte e sua respectiva classificação, considerando alguns parâmetros operacionais escolhidos, que representam a base para a construção de um índice nomeado complexidade

que servirá como medida de análise. Na segunda parte, é apresentado o procedimento de simulação aplicado ao caso do BRS de Copacabana-Rio de Janeiro. Neste caso, foi descrita e demonstrada a utilização dos simuladores na área de estudo, assim como o levantamento dos dados de entrada requeridos para o simulador utilizado. Também se apresentam os artifícios aplicados ao modelo, realizados com a finalidade de ajustar o modelo e representar melhor a realidade. Além disso, foram executados e analisados os cenários propostos.

E por fim, no Capítulo 6, são apresentadas as considerações finais em relação às análises dos diferentes tipos de transporte exclusivo por ônibus, assim como algumas conclusões e recomendações para trabalhos futuros.

2 CARACTERIZAÇÃO E CLASSIFICAÇÃO DOS DIFERENTES MODOS DE TRANSPORTE

O sistema de transporte urbano se caracteriza por ser um dos polos de desenvolvimento das cidades, que se relaciona inevitavelmente com sua infraestrutura, demanda e oferta, este relacionamento gera uma estrutura dinâmica em constante evolução, que traz como consequência alguns transtornos na mobilidade, afetando diretamente a qualidade de vida da população.

"O grau de desenvolvimento econômico e social de uma sociedade está diretamente associado à facilidade de transporte de passageiros e carga, em particular à qualidade de vida nas cidades, e fortemente influenciado pelas características do sistema de transporte urbano" (FERRAZ & TORRES, 2004).

Parte do problema do transporte está intimamente ligada ao crescimento das cidades, acompanhado pelo aumento do parque automotor individual, trazendo alguns efeitos desfavoráveis na mobilidade da cidade e nas redes de transporte, como: aumento do tráfego, congestionamento, acidentalidade, redução das viagens em transporte público e aumento da tarifa, entre outros.

Por isso, é necessário estudar a classificação e a operação das diferentes alternativas e sistemas de transporte. Os sistemas de transporte público com prioridade tornam-se uma ferramenta relevante no aproveitamento do espaço viário e uma alternativa de mitigação do problema do transporte estudado.

São vários os exemplos de sistemas de transporte público prioritário que podem melhorar a qualidade de vida da cidade. As prioridades podem ser aplicadas em diferentes níveis, sendo os modos ferroviários e rodoviários exemplos comuns desses sistemas. Vuchic (1981) caracteriza e classifica esses sistemas em três tipos: i) por direito de passagem; ii) tipo de tecnologia, e iii) tipo de serviço, os quais são necessários nas análises da factibilidade nos projetos de transporte.

2.1 CONSIDERAÇÕES INICIAIS

Neste capítulo pretende-se desenvolver uma metodologia analítica de avaliação e enquadramento do BRS na classificação adotada por Vuchic (1981), especificamente no nível

ou direito de passagem, levando em consideração o nível de complexidade e a capacidade do sistema, assim como sua relação com os diferentes modos de transporte.

A metodologia utilizada neste capítulo fundamenta-se na pesquisa bibliográfica, processo que oferece ferramentas de ajuda para a definição e resolução dos problemas já conhecidos. Neste caso, a definição e a caraterização dos diferentes sistemas de transporte com prioridade, assim como a identificação de variáveis e parâmetros de avaliação da estrutura desses sistemas.

Em uma segunda etapa, foram avaliados os parâmetros e as variáveis escolhidas por meio da utilização de um formulário que foi entregue a pessoas com conhecimento profissional do tema da pesquisa; estudantes de mestrado e doutorado em Engenharia de Transportes, assim como professores da mesma área. O objetivo dessa coleta de dados era encontrar qual o relacionamento dos diferentes modos de transporte público como o BRS, considerando sua capacidade e alguns parâmetros operacionais. Finalmente foram feitas as considerações e conclusões do capítulo.

2.2 A PRIORIDADE NOS SISTEMAS DE TRANSPORTE E SUA CLASSIFICAÇÃO METODOLÓGICA.

As grandes metrópoles enfrentam problemas do transporte na medida em que cresce sua população, sendo que o uso excessivo do veículo particular agrava essa situação. Diante deste panorama torna-se relevante a elaboração de um plano diretor de transporte no qual a rede e as políticas do sistema de transporte sejam o eixo estrutural e alimentador da mobilidade da cidade. Neste processo, deve-se levar em consideração a escolha modal dos diferentes tipos de sistemas de transporte prioritário que serão adotados para o desenvolvimento da rede e para benefício dos usuários, resultados de um complexo modelo e estudo de planejamento, no qual se utilizam distintas ferramentas de análise entre as que se encontram a modelagem e a simulação.

Para isso, no entanto, é indispensável primeiro entender como estão divididos e caracterizados esses modos de transporte para avaliar posteriormente seu desempenho e comparar suas vantagens e desvantagens de implantação com a primeira etapa de planejamento.

Na literatura são encontradas várias metodologias de classificação modal do transporte público. Algumas apresentam algum nível de detalhamento e outras são simples e concisas. Ferraz & Torres (2004) classificam os diferentes modos de transporte em 4 grandes tipos:

privado, público, coletivo (ou de massa) e semipúblico, categorizando cada modo em função do tipo de serviço. Entretanto, não os diferencia quanto aos tipos de prioridade de transporte.

Por sua vez, Vuchic (1981) reúne os elementos principais dos modos de transporte em três grandes categorias: i) por tipo ou categoria de via; ii) tipo de tecnologia utilizada e iii) tipo de serviço. Essa metodologia faz uma análise na qual se pode apreciar os diferentes modos de transporte públicos enquadrados nessas categorias, como será explicado a seguir.

2.2.1 CATEGORIA DA VIA OU DIREITO DE PASSAGEM (*RIGTH-OF-WAY*)

Este tipo de classificação se define como a superfície por onde operam as unidades de transportes e se subdivide em três classes A, B e C.

O direito de via tipo A: Essa categoria representa o transporte rápido de alta capacidade e se caracteriza por ter o direito de via totalmente separado dos outros modos de transporte sem interferências tanto longitudinal como transversal. Os modos de transporte comuns nessa categoria são principalmente os sistemas férreos como o trem, o metrô e o monotrilho. Também entram novas tecnologias, como o caso do Aeromóvel⁵.

As principais vantagens dessas tecnologias são a alta capacidade de transporte de passageiros, os tempos de viagens reduzidos, o alto grau de confiabilidade e a fluidez das viagens sem elementos externos que possam variar seu trajeto, Suas principais desvantagens são: os altos custos de investimento ainda mais elevados que nas outras categorias e a falta de flexibilidade em seu trajeto, apresentando dificuldade de ultrapassar unidades e ter linhas expressas.

O direito de via tipo B: Essa opção se caracteriza pelo uso prioritário da rede viária para o transporte público coletivo, separado fisicamente por barreiras físicas longitudinais, mas mantendo relação nas interseções em nível com os pedestres e com os outros veículos do sistema. Como exemplo dessa categoria, há o VLT (Veículo Leve Sobre Trilhos) e o BRT, os quais já foram implantados em algumas cidades com bons resultados.

A principal desvantagem dessa categoria é a necessidade de construção de nova infraestrutura, o que significa maiores custos de investimento. No entanto, os benefícios na mobilidade são relevantes.

-

⁵ Veículo que utiliza propulsão pneumática como fonte de energia

O direito de via tipo C: Essa classificação se caracteriza pelo compartilhamento do espaço viário entre o transporte individual e o transporte público. Os modos de transporte encontrados nessa categoria são: os veículos individuais, os ônibus convencionais, os trólebus, o bonde, entre outros. A principal vantagem desse grupo de transporte é o nível baixo (a moderado) de investimento em infraestrutura e veículos.

2.2.2 TIPO DE TECNOLOGIA UTILIZADA

O tipo de tecnologia se relaciona diretamente com os aspectos mecânicos das unidades de transporte, levando em consideração quatro elementos principais: suporte, sistema de guia, propulsão e controle.

O suporte se relaciona diretamente com o tipo de superfície de rolamento que suporta o veículo de transporte. Exemplos típicos são os pneus sobre o asfalto ou concreto, a roda de aço sobre os trilhos, o colchão de ar, ou o suporte magnético.

A guia refere-se à forma como é controlado o veículo de transporte em seus movimentos laterais. Nessa categoria, existem dois principais tipos de guias: a primeira diz respeito aos veículos que são dirigidos por meio de um volante, tais como os ônibus, trólebus e BRT. A segunda, aos veículos que são movimentados por trilhos ou guias. Exemplos típicos são: metrô, bonde, VLT, monotrilho, aeromóvel, trem e ônibus, entre outros.

A propulsão refere-se ao tipo de unidade motriz que tem o veículo e a unidade de transferência de forças de aceleração e desaceleração. Por exemplo: os motores de combustão interna, os motores elétricos e os de transferência das forças atrativas.

O controle se explica como o tipo de controle do veículo, que pode ser manual-visual (ônibus), manual-sinal (trem leve) ou completamente automático.

2.2.3 TIPO DE SERVIÇO

O tipo de serviço refere-se às características dos tipos de linhas que estão no sistema, sua forma e horários de operação.

Embora os meios de transporte sejam descritos e divididos em várias categorias, não ficam muito definidos os limites existentes entre cada uma delas, pois, com a chegada de novos sistemas de transporte e de novas tecnologias, essas barreiras ou esses limites tendem a se misturar.

O sistema BRS tem demostrado ser uma excelente alternativa em locais onde não podem se implantar sistemas de prioridade tipo BRT, entretanto, sua circulação junto ao sistema tradicional e as novas regras de operação prioritária o tornam um sistema no qual é difícil classificar o seu tipo de direito de via (B ou C).

Para entender melhor essa hipótese, descrevem-se a seguir as características dos diferentes modos de transporte usualmente utilizados nas grandes metrópoles para o transporte de pessoas, visando a entender seu relacionamento sob o ponto de vista de alguns parâmetros operacionais.

2.3 MODOS PRIORITÁRIOS DE TRANSPORTE

Mencionou-se anteriormente que é possível classificar os modos prioritários de transporte, assim como a importância disso. Nesta seção, é caracterizado cada um desses modos com a finalidade de se ter uma melhor visão dos parâmetros operacionais inerentes a cada sistema, assim como suas vantagens e desvantagens, tentando encontrar as diferentes variáveis operacionais de cada um deles. O que será insumo importante para a análise e desenvolvimento dos objetivos deste trabalho.

2.3.1 Metrô

Levando em consideração as altas demandas de transporte nas cidades em etapa de desenvolvimento, é comum ver que a principal escolha do sistema de transporte é o metrô. Ferraz & Torres (2004) abordam a definição do metrô como um nome designado aos trens urbanos que são movimentados por vias totalmente exclusivas sem obstáculos físicos nem interseções (direito de via tipo A), capazes de gerar maior velocidade e capacidade no transporte de passageiros.

A primeira linha do metrô foi construída em 1863 na Cidade de Londres, sendo imediatamente implantados por toda Europa e em algumas cidades dos Estados Unidos. No Brasil, apareceu a primeira linha de metrô em 1974, na Cidade de São Paulo, seguido por Rio de Janeiro, em 1979, Recife e Porto Alegre, em 1985 (LERNER & NTU, 2009). Agora são 12 cidades com sistema de metrô no Brasil, segundo dados do CBTU.

As principais características do metrô se fundamentam no uso exclusivo e segregado de seu direito de via e na capacidade de se transportar um maior número de passageiros por hora,

operando com carros em comboio, o que lhe permite trafegar com altas velocidades e tempos de viagens reduzidos e confiáveis. Esse sistema opera com um sistema guiado automático que pode ser pneumático ou elétrico. Sua principal vantagem é a grande capacidade de transportar passageiros com a limitação de ultrapassagem, o que evita a utilização de serviços expressos, obrigando ao veículo parar em todas as estações. Uma desvantagem é o grande nível de investimento na implantação e operação.

Sua velocidade de operação pode estar entre os 25 e 60 km/h com frequências na demanda durante a hora de pico de 20 e 40 trens por hora. O que permite obter capacidades máximas de 60.000 a 80.000 passageiros por hora (MOLINERO & SÁNCHEZ, 2002).

2.3.2 O TREM SUBURBANO

Este sistema tem características similares ao metrô, mas se diferencia por sua cobertura operacional, que atua em um nível regional e não estritamente urbana, como acontece com o metrô. Esse sistema utiliza a rede ferroviária interurbana existente com veículos de tração elétrica ou diesel.

A capacidade de cada carro do trem é de 150 a 250 passageiros e geralmente o transporte é realizado em comboio de 4 a 10 carros, segundo a demanda. O trem suburbano também é caracterizado pelas grandes distâncias entre pontos de paradas ou estações da ordem dos 5 km (MOLINERO & SÁNCHEZ, 2002).

2.3.3 BRT – BUS RAPID TRANSIT

Segundo Wright & Hook (2007), o BRT pode ser definido como "um sistema de transporte de ônibus que proporciona mobilidade urbana rápida, confortável e com custo eficiente através da provisão de infraestrutura segregada com prioridade de passagem, operação rápida e frequente e excelência em marketing e serviço ao usuário".

O BRT pode ser definido como um sistema de ônibus de alta capacidade que utiliza pista exclusiva como medida de prioridade, enquadrando-se na classificação tipo B, segundo a descrição feita por Vuchic (1981).

Esse sistema de transporte surgiu em 1974 na Cidade de Curitiba na implantação do sistema de vias exclusivas "Ônibus Expressos", quando ainda não se tinha adotado o nome atual de BRT e depois foi adaptado em diferentes países.

O BRT caracteriza-se por sua operação sobre infraestrutura segregada, assim como a utilização de ônibus com padrões maiores que os convencionais. O que permite maior quantidade de passageiros transportados. Além disso, possui a capacidade de ultrapassagem de outras linhas, o que leva à aparição de serviços expressos mistos com serviços paradores, refletindo no ganho de tempo de viagem e na maior quantidade de passageiros transportados.

2.3.4 BRS – BUS RAPID SERVICE

Como foi citado anteriormente, o BRS foi chamado assim inicialmente na Cidade do Rio de Janeiro por ser um sistema exclusivo de transporte público para ônibus que, além de utilizar as faixas exclusivas como medida de prioridade, adota elementos e variáveis que compõem sua estrutura física e operacional. São eles: os pontos de parada, o tipo de via, a oferta de transporte e o método de fiscalização. Além disso, adota algumas regras que permitem a entrada de veículos individuais nas faixas sem perder a eficiência do sistema de transporte.

Umas das principais vantagens desse sistema de transporte é o baixo nível de investimento de infraestrutura e a rápida implantação. Assim como a redução de tempos de viagens da frota, o aumento na velocidade de operação e a atração da demanda.

2.4 OUTROS SISTEMAS COM PRIORIDADE

2.4.1 BONDE

Quando se fala em bonde, pensa-se em uma tecnologia em desuso e ultrapassada, pois esse foi o primeiro sistema motorizado para o transporte de pessoas. No entanto, esse sistema ainda é utilizado em algumas cidades no mundo, em alguns casos como transporte turístico e em outros para o transporte púbico coletivo. Nesse último caso, com melhora em sua tecnologia e rede.

Pode-se definir o bonde como um sistema de transporte férreo com tipo de direito de via B e tecnologia de guia que opera geralmente com um carro ao qual se pode engatar um ou dois. Sua convivência com o trânsito misto faz com que sua confiabilidade e velocidade de operação dependam das condições do trânsito, sendo essas menores que 20 km/h (MOLINERO & SÁNCHEZ, 2002).

2.4.2 VLT – VEÍCULO LEVE SOBRE TRILHOS

O VLT pode ser definido como um meio de transporte sobre trilhos com características que se permeiam entre as do bonde e metrô. São modernos veículos que operam junto com o tráfego regular em à direita da via segregada tipo B, com um sistema de guia por trilhos e movido por energia elétrica em comboios de três a quatro carros. Esse sistema é usualmente utilizado para atender a grandes demandas nas grandes cidades. No entanto, não chega a ter a capacidade e velocidade do metrô, mas ultrapassa o bonde nessas características, logrando transportar em cada carro entre 150 a 250 passageiros ou 20.000 passageiros/hora aproximadamente, segundo dados da NTU (2007). Dependendo da tecnologia, pode chegar a carregar 40.000 passageiros/hora (OLIVEIRA, 2010).

2.4.3 Monotrilho

O monotrilho é um sistema de transporte que se diferencia dos outros sistemas principalmente por seu tipo de direito de via, caracterizado como tipo A. Esse utiliza como superfície de rolamento um único trilho de aço ou uma viga de concreto, alcança velocidades de operação entre 20 e 40 km/hora, pode atender até 50 mil passageiros por hora e, como normalmente seu direito de passagem é elevado, tem uma baixa a nula interferência com a mobilidade da cidade e com a operação do trafego misto do mesmo modo que o metrô. Existem 3 tipos de monotrilhos: apoiado pelo fundo, suspenso pelo teto e apoiado lateralmente, como se apresentam na Figura 2-1.

Figura 2-1 Monotrilho Fonte: www.fna.org.br

2.5 ELEMENTOS DE SÍNTESE

Em resumo, na Tabela 2-1 se apresentam alguns indicadores operacionais dos sistemas de transporte anteriormente mencionados. São notáveis as diferenças existentes entre os sistemas de ônibus e os sistemas com trilhos ou ferroviários, assim como os valores máximos e mínimos de capacidade, custo e velocidade, entre outros parâmetros que são relevantes na hora de avaliar e planejar a infraestrutura de transporte a serem implantadas. Nota-se que a capacidade e a velocidade são maiores nos sistemas de transporte com trilho do que nos rodoviários. No entanto, o BRT consegue levar em média 30 mil passageiros por hora, volume que o cataloga como transporte de alta capacidade, ficando dentro do *ranking* de capacidade dos sistemas ferroviários.

Tabela 2-1 Indicadores operacionais sistemas de transporte

Tubeta 2-1 Indicadores operacionais sistemas de transporte									
CARACTERÍSTICA	ÔNIBUS CONVENCIONAL	BONDE	BRT	VLT MONOTRILHO		TREM SUBURBANO	METRÔ		
Custo médio de implantação (milhões R\$ /km)	5,5	Não encontrado	11,1	40,4	80 a 140	Não encontrado	201		
Capacidade máxima típica de transporte (mil passageiros/hora)	5 a 15	5 a 15	10 a 30	10 a 40	15 a 50	20-50	25 a 80		
Velocidade média (km/h)	10-20	10-20	25 a 60	20 a 40	40 a 60	40-70	40 a 90		
Interferência no trânsito	Alta	Alta	Alta	Alta	Mínima (elevado)	Mínima (elevado)	Mínimo (subterrâneo)		
Custo previsto em desapropriação	Não encontrado	Não encontrado	Alto	Elevado	Baixo	Não encontrado	Médio		

CARACTERÍSTICA	ÔNIBUS CONVENCIONAL	BONDE	BRT	VLT	MONOTRILHO	TREM SUBURBANO	METRÔ
Interferência durante construção	Não encontrado	Não encontrado	Alta	Elevada	Média	Não encontrado	Baixa
Capacidade de atrair usuários do transporte individual	Baixa	Media	Media	Média	Alta	Não encontrado	Alta
Distância entre paradas (m)	200-400	200-400		400-800		1500-4000	700-2000

Fonte: Adaptado de Oliveira (2010), Ferraz & Torres (2004) e Lerner & NTU (2009).

2.6 COMPLEXIDADE NO TRANSPORTE PRIORITÁRIO COMO ÍNDICE DE DESEMPENHO.

Pode-se entender a complexidade como um termo que se compõe de uma alta variedade de elementos que atuam entre si para atender a um objetivo. No transporte urbano, a complexidade pode se definir como a unificação dos diferentes indicadores de desempenho dos sistemas de transporte dentro da mobilidade da cidade. Neste trabalho, pretende-se identificar e definir esse componente a partir de dois pontos de vista diferentes. O primeiro levando em consideração o tipo de tecnologia utilizada, focado em alguns parâmetros de qualidade encontrados na literatura, O segundo refere-se ao componente da operação do sistema de transporte que pode se relacionar com variáveis como: capacidade, velocidade, nível de serviço, nível de investimento, infraestrutura, tipo de rede, entre outras. A complexidade será estudada a partir do ponto de vista da operação sob três grandes variáveis: capacidade, nível de serviço e nível de investimento. A primeira relacionada à quantidade máxima de passageiros que pode deslocar; a segunda refere-se ao nível de operação e à qualidade do sistema e a última, aos custos iniciais de infraestrutura para a implantação desses sistemas de transporte.

Capacidade

O valor da capacidade dos modos de transporte mostra-se na literatura com diferentes valores, pois varia dependendo das novas experiências e inovações nos diferentes modos. Molinero & Arellano (2002) apresentam (ver Figura 2-2) os diferentes níveis de capacidade de alguns modos de transporte, onde se ressalta o metrô como o sistema com a maior capacidade de passageiros por hora e o micro-ônibus como o menor. No entanto, Lerner (2009) apresenta (ver Tabela 2-2) a inclusão do BRT, o que muda alguns valores de capacidade apresentados por Molinero (2007), especialmente nos sistemas de alta capacidade, onde a mudança é

significativa. Um exemplo é o metrô, que passa aproximadamente de 36 mil até 96 mil passageiros/hora, e o BRT, que aumenta até uma capacidade máxima de 48.6 mil passageiros/hora. No entanto, concordam em ressaltar que o metrô carrega a maior quantidade de passageiros e o ônibus, a menor.

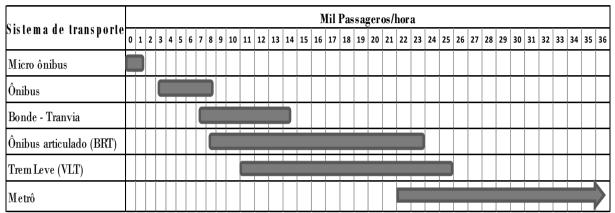


Figura 2-2 Capacidade de passageiros transportados por modo de transporte. Fonte: Molinero & Sánchez (2002)

Tabela 2-2 Variáveis de desempenho Modos de transporte

SISTEMA	TIPO DE VEÍCULO	TIPO DE VIA	TIPO DE ESTAÇÃO	Tipo de Linha	Velocidade (Km/h)	Capacidade (Pass./veíc)	Intervalo (minutos)	Frequência (veíc/h)	Capacidade (pass/h)
Metrô	Trem 8 carros	Segregada (1)	Sem ultrapassagem	Paradora	40	2.400	1,5	40	96.000
VLT	Trem 4 carros	Segregada (1)	Sem ultrapassagem	Paradora	20	1.000	3,0	20	20.000
BRT	Biarticulado	Exclusiva (2)	Sem ultrapassagem	Paradora	20	270	1,0	60	16.200
BRT	Biarticulado	Exclusiva (2)	Com ultrapassagem	Direta	35	270	0,5	120	32.400
BRT	Biarticulado	Exclusiva (2)	Com ultrapassagem	Mista	27,5	270	0,3	180	48.600
Ônibus	Convencional	Compartilhada	Ponto de parada	Paradora	17	80	1,0	60	4.800

Nota: (1) Subterrânea / Elevada = sem interferência viária

(2) Via em nível com 7,0 metros de largura, 14,0 metros de largura, nas estações com ultrapassagem Fonte: Lerner & NTU (2009)

Nível de serviço

O nível de serviço pode ser definido como um indicador de desempenho que, neste caso, representa parte do nível de qualidade dos sistemas de transporte. Segundo Cal & Mayor

(2005), o nível de serviço nos sistemas de transporte público deve incluir a valoração de fatores tais como conforto, rapidez, confiabilidade, acessibilidade e segurança, além da incorporação ao sistema das zonas de atividade laboral e residenciais.

Ferraz & Torres (2004) concordam com essas variáveis, mas acrescentam variáveis como estado das vias, características do veículo, lotação, características dos locais de parada, transportabilidade, comportamentos dos operadores e estado das vias. Cada variável é avaliada com: bom, regular ou ruim. Entretanto, os autores orientam a avaliação desses atributos no transporte por ônibus, não limitando a possibilidade de adaptá-los aos demais sistemas de transporte. Para este trabalho, foram avaliados somente os atributos descritos por Cal & Mayor (2005), os quais são descritos na Tabela 2-3.

É importante ressaltar que um serviço de transporte público com ótimas condições de conforto, ampla cobertura, altas velocidades de operação com segurança e certeza de chegada dos veículos nos pontos de parada são indícios de níveis de serviço apropriados.

Tabela 2-3 Fatores de qualidade do transporte para avaliação do nível de serviço.

ATRIBUTO	CARACTERÍSTICAS
Confiabilidade	Frequência, horários, número de linhas, horário de operação, informações disponíveis.
Conforto	Grau de ocupação do veículo, tempo de viagem.
Rapidez	Variação da duração da viagem, velocidade de operação.
Acessibilidade	Abrangência do sistema de transporte e acesso às atividades.
Segurança	Segurança durante a viagem relacionada ao tipo de tecnologia utilizada (acidentes).

Fonte: adaptação de Cal & Mayor (2005)

Outro elemento que se incorpora à complexidade dos sistemas de transporte é o nível de investimento que se refere diretamente aos custos de implantação, ligados ao desenvolvimento de infraestruturas próprias para cada sistema. Lerner & NTU (2009) descrevem os custos e prazos de implantação de vários sistemas de transportes no Brasil (ver Tabela 2-4), onde se observa um maior valor de investimento para o metrô e um menor para o ônibus convencional, com uma ampla diferença entre um sistema e outro. É importante ressaltar que além de ter maior custo, a implantação do metrô também leva mais tempo para ser implantado.

Tabela 2-4 Custos de execução e custos de implantação.

	METRÔ		VLT		BRT		ÔNIBUS CONVENCIONAL	
ETAPAS	Prazo (anos)	Custo (R\$ milhões)	Prazo (anos)	Custo (R\$ milhões)	Prazo (anos)	Custo (R\$ milhões)	Prazo (anos)	Custo (R\$ milhões)
Projeto básico	1	4,5	1	1,5	0,5	0,3	-	-
Financiamento	2	0,5	2	0,5	0,5	0,2	-	-
Projeto executivo	1	5,0	1	2,0	0,5	0,5		
Implantação	5	2000	2	400	1	110	1	55
TOTAL	9	2010	5	404	2,5	111	1	55

Exemplo para implantação de corredor com 10,0 km para 150 mil passageiros/dia.

Custos por km: $\mathbf{METR\hat{O}} = \mathbb{R}\$\ 201,0\ \text{milhões};\ \mathbf{VLT} = \mathbb{R}\$\ 40,4\ \text{milhões};\ \mathbf{BRT} = \mathbb{R}\$\ 11,1\ \text{milhões};\ \mathbf{\hat{O}nibus} = \mathbb{R}\$\ 5,5\ \text{milhões}.$

Fonte: Lerner e NTU (2009)

• AVALIAÇÃO METODOLÓGICA DA COMPLEXIDADE DOS DIFERENTES MODOS DE TRANSPORTE

Com a finalidade de qualificar e quantificar a classificação por tipo direito de passagem descrita por Vuchic (1981), encontrou-se e adaptou-se uma avaliação conjunta com os atributos citados na seção 2.6, por meio de níveis de importância, encontrando um índice chamado nesta dissertação de índice de complexidade, o qual é produto da unificação dos atributos operacionais apresentados na seção anterior. Esses atributos são avaliados como segue:

i. Confiabilidade

A confiabilidade é para o transporte coletivo urbano por ônibus um dos mais importantes indicadores no processo de escolha do modo pelo usuário na realização de uma viagem (SILVA *et al.*, 2013).

A confiabilidade é avaliada pelo nível de precisão com que as linhas dos sistemas de transporte chegam ao ponto de parada, assim como o grau de informação divulgada quanto à chegada das unidades de transporte e seus horários de operação nesses sistemas. Meio pelo qual esse elemento é avaliado, levando em consideração as características que seguem na Tabela 2-5.

Tabela 2-5 Tabela de avaliação Confiabilidade

CLASSIFICAÇÃO	CARACTERÍSTICAS	AVALIAÇÃO
EXCELENTE	Frequências sem atrasos, painel com informação na hora dos veículos de transporte chegando.	10
ÓTIMO	Frequências sem atrasos, informação sobre linhas.	8
BOM	Frequências sem atrasos.	7
REGULAR	Frequências com atrasos moderados.	5
RUIM	Frequências com atrasos, sem painel informativo.	3
PÉSSIMO	Não tem conhecimento da frequência do ônibus e nem da hora de chegada.	1

Fonte: adaptado de Cal & Mayor (2005) e Ferraz & Torres (2004).

ii. Rapidez

Cal & Mayor (2005) definem a rapidez a partir de duas perspectivas: a primeira que se relaciona com aspectos de operação do sistema, como a necessidade de transbordos e o cancelamento da tarifa. A segunda, com a relação com o tempo de viagem e a velocidade de operação.

Essa variável é avaliada levando em consideração a velocidade de operação de cada sistema, baseada na avaliação qualitativa e quantitativa apresentada na Tabela 2-6.

Tabela 2-6 Avaliação da velocidade

CLASSIFICAÇÃO	VELOCIDADE DE OPERAÇÃO km/h	AVALIAÇÃO
EXCELENTE	>= 40	10
ÓTIMO	30 - 40	8
BOM	20 - 30	7
REGULAR	10 - 20	5
RUIM	5 - 10	3
PÉSSIMO	0 - 5	1

Fonte: adaptado de (LERNER & NTU, 2009).

iii. Conforto

Este aspecto vem acompanhado de vários fatores que se devem levar em consideração, tais como a possibilidade de ir sentado, a temperatura interna, a ventilação e o ruído. No entanto, o grau de conforto também pode ser estabelecido pelo comprimento da viagem e o tempo de deslocamento, pois, em uma viagem curta, ir em pé não interessa muito (CAL & MAYOR, 2005). Neste caso, o conforto está relacionado com o tempo de deslocamento da viagem e a densidade de ocupação do veículo. Na Tabela 2-7, são apresentados esses parâmetros e sua avaliação qualitativa e quantitativa.

Tabela 2-7 Indicadores de conforto densidade de ocupação e tempo de viagem.

CLASSIFICAÇÃO	DENSIDADE OCUPAÇÃO (passageiro/m²)	DURAÇÃO MÍNIMA DA VIAGEM (min)	AVALIAÇÃO
EXCELENTE	Todos sentados		10
ÓTIMO	0 - 1,5	< 90	8
BOM	1,5 - 3	< 60	7
REGULAR	3 - 4,5	< 40	5
RUIM	4,5 - 6	< 10	3
PÉSSIMO	> 6	< 2	1

Fonte: Cal & Mayor (2005)

iv. Acessibilidade

Segundo Molinero & Sánchez (2002), pode-se entender a acessibilidade como a facilidade de deslocamento de um lugar a outro com o objetivo de realizar alguma atividade (trabalho, estudo, serviços e casa), mediante um sistema de transporte, para determinado grupo de pessoas e em diversas horas do dia.

Com base em um maior detalhamento, Cal & Mayor (2005) relacionam a acessibilidade com tempo de acesso aos pontos de parada das unidades de transporte, junto com o tempo de espera dos veículos. Além disso, estabelecem dois tipos de acessibilidade: a acessibilidade locacional e a acessibilidade temporária. A primeira se refere ao nível de proximidade com os pontos de embarque e desembarque e a segunda com a frequência do serviço derivado da demanda. Neste trabalho, é utilizada a acessibilidade locacional como medida de análise, como se ilustra na Tabela 2-8.

Tabela 2-8 Indicadores de acessibilidade locacional

		DIST		
CLASSIFICAÇÃO	TEMPO (min)	A PÉ (m)	DE AUTO (km)	AVALIAÇÃO
EXCELENTE	< 2	< 100	< 0,8	10
ÓTIMO	2 - 4	100 - 200	0,8 - 1,6	8
BOM	4 - 7,5	200 - 400	1,6 - 3,2	7
REGULAR	7,5 - 12	400 - 600	3,2 - 4,8	5
RUIM	12 - 20	600 - 1000	4,8 - 8	3
PÉSSIMO	>20	> 1000	> 8	1

Fonte: adaptado de Cal & Mayor (2005)

v. Nível De Investimento

A avaliação desse atributo envolve diretamente o custo inicial de implantação do sistema de transportes. Na Tabela 2-4 se apresentou um resumo com os custos de implantação de alguns sistemas. Estes serão a base para a construção da tabela de avaliação desse atributo, como se indica na Tabela 2-9.

Tabela 2-9 Indicadores de nível de investimento nos sistemas de transporte

NÍVEL DE INVESTIMENTO	CUSTO (R\$ MILHÕES)	AVALIAÇÃO
MUITO ALTO	> 1500	10
ALTO	1000 - 1500	8
MODERADO	400 - 1000	7
REGULAR	100 - 400	5
BAIXO	< 100	3

Fonte: adaptado de Lerner & NTU (2009).

vi. Segurança

Cal & Mayor (2005) e Ferraz & Torres (2004) concordam que o aspecto mais relevante na segurança compreende o nível de acidentes no sistema, assim como atos criminosos e de violência para os usuários dos veículos ou dos pontos de paradas nos terminais do próprio sistema.

Para a análise, levou-se em consideração o nível de acidentes, pois é mais conhecido de forma geral em cada sistema de transporte. Esse atributo é avaliado como se apresenta na Tabela 2-10.

Tabela 2-10 Indicador do nível de segurança

GRAU DE SEGURANÇA	CARACTERÍSTICAS	AVALIAÇÃO
MUITO ALTO	Baixo índice de acidentalidade, geralmente livre de roubos e crimes.	10
ALTO	Baixo índice de acidentes	8
MODERADO	Moderado índice de acidentalidade, feridos, são apresentados roubos minúsculos	7
REGULAR	Moderado índice de acidentalidade, propenso a roubo	5
BAIXO	Alto índice de acidentalidade, feridos, choques, indícios de roubo e delitos graves	3
RUIM	Alto índice de acidentalidade, mortos, feridos, choques, indício de roubo e delitos graves.	1

Fonte: adaptado de Cal & Mayor (2005) e Ferraz & Torres (2004).

vii. Peso dos atributos

Com a finalidade de ajustar o modelo de avaliação o melhor possível e saber qual dos seis atributos estudados tem maior influência na operação de cada sistema de transporte e qual menor, foi elaborada no formulário uma questão (questão VII), a qual foi avaliada levando em consideração uma qualificação desde 1 até 10, onde 1 é menos importante e 10 mais importante.

Ao final, a somatória dos pesos avaliados dos atributos deve ser igual a 10. A Tabela 2-11 apresenta um exemplo da qualificação dos pesos dos atributos estudados.

ATRIBUTO QUALIFICAÇÃO (PESO) Confiabilidade 3 Conforto 2.5 Rapidez 2 Acessibilidade 1.3 Segurança 0.7 Nível de investimento 0.5 **SOMATÓRIA TOTAL** 10

Tabela 2-11 Exemplo da qualificação por pesos dos atributos estudados

viii. CALCULO DO ÍNDICE DE COMPLEXIDADE

Na seção anterior foi apresentada a avaliação dos diferentes atributos componentes da operação dos diferentes meios de transporte. Pretende-se nesta seção combinar esses valores, visando a encontrar um valor único nomeado "Complexidade" e assim poder localizar de forma quantitativa cada sistema, incluindo o BRS. Por isso, serão ajustados os valores de cada atributo mediante os pesos obtidos, aplicando a seguinte formulação matemática: (1)

$$c_i(co, ra, f, a, s, ni) = X1co_i + X2r_i + X3f_i + X4a_i + X5s_i + X6ni_i$$
 (1)

Onde;

i = diferentes sistemas de transporte (ÔNIBUS,BRS,BRT,VLT,BONDE,METRÔ.

TREM, MONOTRILHO),

- c_i = Indicador de Complexidade do sistema de transporte;
- r_i = Avaliação do atributo de Rapidez do sistema de transporte;
- co_i = Avaliação do atributo de Confiabilidade de sistema de transporte;
- a_i = Avaliação do atributo de Acessibilidade do sistema de transporte;
- ni_i = Avaliação do atributo de Nível de investimento do sistema de transporte;
- s_i = Avaliação do atributo de Seguranca do sistema de transporte;
- f_i = Avaliação do atributo de Conforto do sistema de transporte;
- X1 = Peso atribuido à variável Confiabilidade;
- X2 = Peso atribuido à variável Rapidez;
- X3 = Peso atribuido à variável Conforto;
- X4 = Peso atribuido á variável Acessibilidade;
- X5 = Peso atribuido à varivel Segurança;
- X6 = Peso atribuido à variável Nível de investimento.

2.7 CONSIDERAÇÕES DO CAPÍTULO

O BRS é um termo novo que aplica todos os conceitos conhecidos de faixas exclusivas com um componente tecnológico forte e uma reorganização apropriada da frota, mostrando-se como um sistema em transição entre o sistema tradicional e os sistemas de transporte BRT, característica pela qual vai além dos sistemas de faixas exclusivas convencionais. E, por isso, esse sistema está próximo de se estabelecer dentro da categoria de via (*Rigth-of-way*) B, dependendo de seu nível de complexidade, o qual é possível que varie com a inovação de novas tecnologias ou com um melhoramento de seus atributos operacionais.

O nível de complexidade mostra-se como uma ferramenta de análise na categorização dos diferentes modos de transporte prioritário, o qual não pretende substituir outras técnicas

de análise, mas sim contribuir junto com elas no planejamento dos sistemas de transporte nas cidades.

3 MEDIDAS DE PRIORIDADE NO TRANSPORTE PÚBLICO COLETIVO PARA ÔNIBUS

Na atualidade, a crise do transporte nas grandes cidades tem sido mitigada com a implantação de diferentes medidas e sistemas de transporte, os quais têm como objetivo priorizar as viagens em transporte público em relação às viagens realizadas por veículos individuais.

O trato preferencial do transporte público torna-se relevante levando em consideração que este é um dos requisitos indispensáveis para melhorar sua competitividade em relação ao automóvel. Não se deve esquecer que, para lograr uma maior participação no transporte público com respeito ao privado, ele primeiro deve melhorar consideravelmente seu nível de serviço.

Os sistemas de transporte de faixas exclusivas para ônibus são uma das principais medidas do tratamento preferencial no transporte público, o que se ressalta pelos investimentos de curtíssimo prazo, baixo custo e alto impacto para o sistema de mobilidade urbana.

Neste capítulo, pretende-se estudar os sistemas preferenciais por ônibus focado nas faixas exclusivas e sua relação com as medidas prioritárias. Assim como sua relação com as interferências causadas por outros tipos de veículos, visando a formular uma subclassificação enquadrada na classificação tipo C, formulada por Vuchic (1981), como se analisou no capítulo anterior, e que poderá servir como ferramenta para o processo de planejamento das cidades, especificamente as que buscam por alternativas econômicas com baixos níveis de investimento e baixos prazos de implantação.

Também se pretende estudar a categoria tipo C com foco nos sistemas de ônibus, a partir da qual se propõe uma subclassificação segundo seu grau de interferência e prioridade.

Nas seguintes seções, serão apresentadas as diferentes medidas de prioridade, com destaque para o caso das faixas exclusivas. Para as análises desse tema, apresenta-se com maior detalhe o caso do BRS.

3.1 ANTECEDENTES DAS MEDIDAS DE PRIORIDADE

As faixas exclusivas utilizadas para o transporte público são uma característica usual nas cidades em desenvolvimento. Suas primeiras medidas com vistas à prioridade se dão perto do ano de 1950, produto de uma série de intervenções na rua, fundamentando os conceitos básicos das medidas de prioridade da época. Entre as que se destacam, estão: o direito de

passagem liberado dos bondes, regulamentação para a restrição e proibição na utilização das calçadas como estacionamentos e zonas de subida e descida de passageiros para aprimorar o transporte público nas horas de pico (1897). Assim como, a utilização de tinta para pintar a rua para alocar o espaço para outros fins e vias em contrafluxo ou reversíveis na hora de pico, incentivando a utilização das faixas exclusivas (CHICAGO, 1939; AGRAWAL, *et.al.*, 2012).

Em meados dos anos 50, pistas prioritárias de ônibus surgiram como uma solução popular para um conjunto de problemas nas cidades em todo os Estados Unidos, inicialmente em Chicago, depois em Nashville (1956) aprimorou-se o sistema, ficando como exemplo para outras cidades as quais se listam na Tabela 3-1.

Tabela 3-1 Estabelecimento inicial de ônibus em faixas exclusivas em algumas cidades.

Ano	Cidade
1956	Nashville, Chicago, Harrisburg, Newark, Philadelphia
1957	Rochester, Minneapolis, Washington
1958	Atlanta, Baltimore, Birmingham, Dallas, Winnipeg
1959	Peoria
1963	Hamburg, New York, Vancouver
1964	Buffalo, Paris
1966	Brussels, Montreal
1968	Providence, San Antonio, London
1970	San Francisco, Seattle, Syracuse
1971	Houston, San Juan
1974	Los Angeles
1984	Seoul
1992	Sydney

Fonte: (AGRAWAL ET AL., 2012)

A eficiência desse serviço nessa época, no entanto, não era da mais alta qualidade e foi decrescendo em função do aumento desmedido dos automóveis particulares e da falta de fiscalização, tecnologia e infraestrutura, além do incremento da demanda, complicando a operação desses sistemas (NTU, 2013; TSUTOMU & NAKAMURA, 2005). Em 1974, em Curitiba, Brasil, o sistema de transporte prioritário para ônibus seguiu outro rumo, evoluindo para o BRT, termo em inglês adotado anos depois na América do Norte, substituindo os termos mais antigos como 'express buses', 'busways', 'bus lanes' ou até BHNS (Bus à Haut Niveau de Service) na França (AGRAWAL et al., 2012; LERNER & NTU, 2009). Esse

sistema se diferencia dos outros principalmente pela utilização de corredores exclusivos e segregados somente para ônibus, além do uso exclusivo de pontos de parada e terminais de ônibus. Conceito que foi aprimorado em Bogotá, Colômbia, no ano de 1990 onde se incorporou um novo esquema das empresas prestadoras do serviço e então se espalhou como exemplo para muitas cidades no mundo.

Mesmo assim, o conceito inicial de faixas exclusivas não foi esquecido. Em algumas cidades se adotaram medidas quanto à tecnologia e à infraestrutura, trazendo funcionalidade e melhoria a esses sistemas, demonstrando assim o potencial para oferecer qualidade e eficiência ao transporte coletivo urbano por ônibus, especialmente em vias com limitada infraestrutura e baixo orçamento.

No Rio de Janeiro, a prioridade para a circulação do transporte coletivo foi conquistada com faixas exclusivas para o deslocamento dos ônibus no sistema viário. O BRS foi implantado com o objetivo de racionalizar o sistema de transporte público e consequentemente aumentar a velocidade das viagens e reduzir o tempo de viagem no transporte coletivo, além de reorganizar o sistema de transporte.

3.2 MEDIDAS DE TRATAMENTO PREFERENCIAL

O tratamento preferencial para o transporte público é uma ampla combinação de várias medidas preferenciais, as quais procuram aperfeiçoar o sistema, contribuindo com a mobilidade da cidade. Essas medidas visam a incrementar a capacidade da via e dar prioridade ao transporte público, ampliando e melhorando a qualidade do serviço e as operações no trânsito da cidade por meio da diminuição do tempo da viagem e do aumento da confiabilidade para o passageiro.

A prioridade no transporte público inclui tratamentos físicos e operacionais aplicados em todo o trajeto dos corredores. Essas medidas podem se distribuir pelo tipo de infraestruturas afetadas: i) nos corredores; ii) nas interseções e iii) na calçada (VANNASSE HAGEN BRUSTLIN Inc, 2011).

i. Nos corredores: Os tratamentos preferenciais nos corredores se dão levando em consideração a intervenção na via, como implantação e localização de faixas exclusivas, restrição de veículos nessas faixas, sinalização do corredor ou faixa exclusiva e o grau de mistura com o tráfego misto do corredor. Essa categoria será estudada com maior detalhe na

seguinte seção, pois este trabalho foca no tratamento preferencial nos corredores, especificamente na utilização das faixas exclusivas e no seu nível de interferência com os outros veículos.

ii. Nas interseções: Nesta categoria, as medidas de prioridade são dadas a partir do nível de prioridade para os veículos que circulam pela interseção. Entre exemplos típicos que se dão nessa categoria, tem-se: faixa de pedestres, sinal com prioridade (passiva e ativa), *Queue Jumps* e *Queue Bypass*.

iii. Na calçada: Refere-se ao espaço utilizado na calçada para alocação de pontos de parada prioritários, fornecendo maior conforto e tecnologia que os pontos tradicionais. Esses espaços geralmente incluem abrigos exclusivos criados para acomodar altos volumes de passageiros e, em alguns casos, tecnologia ITS.⁶, que apresenta alertas de proximidade dos ônibus e notícias do estado atual do trafego. Nesses locais também se podem encontrar pontos para o pagamento antecipado da tarifa. As principais variáveis, que intervêm no nível de prioridade desse item, são a largura, a altura da calçada e o comprimento, variáveis que podem alterar significantemente os tempos de viagem dos veículos priorizados e consequentemente o nível de prioridade do sistema.

Entre os principais benefícios que podem ser obtidos em um tratamento preferencial, tem-se: incremento na velocidade de operação, incremento na sua confiabilidade, melhoria na imagem do serviço de ônibus, redução dos custos de operação, melhoria na segurança, redução dos tempos de viagem, realocação estratégica e eficiência dos pontos de parada e melhoria no incentivo da utilização do transporte público.

São várias as medidas que se encontram em um tratamento preferencial. A Tabela 3-2 Medidas de prioridade no transporte público resume e descreve com detalhes cada uma dessas medidas.

Essas medidas de tratamento preferencial demostraram seu grande potencial para o desenvolvimento do transporte público nas cidades, no entanto, são inumeráveis as experiências não bem sucedidas, pois esses sistemas ficaram esquecidos, devido

⁶ ITS sigla em inglês para *Intelligent Transportation Systems*, Sistemas inteligentes de transporte.

principalmente à falta de fiscalização e unificação efetiva delas, especialmente nos países menos desenvolvidos e carentes de tecnologia apropriada.

Houve, no entanto, uma reativação importante no estudo e implantação dessas medidas de prioridade no mundo durante essa nova época das comunicações, quando as barreiras tecnológicas são cada vez menores. Atualmente existem casos bem sucedidos, produtos de um correto planejamento e unificação de tecnologias propícias para o desenvolvimento dessas medidas prioritárias, como é o caso do BRS. Conforme relatado em capítulos anteriores, o BRS é um sistema de transporte preferencial que utiliza principalmente faixas exclusivas como medida de prioridade. Além disso, utiliza tecnologias ITS para monitorar seu desempenho e fiscalizar suas regras de operação em tempo real, eliminando uma limitação latente nesses sistemas.

É importante ressaltar que os sistemas de faixas exclusivas constituem uma das medidas com maior relevância no tratamento preferencial do transporte público. Estas são usualmente adotadas em projetos de intervenção de baixo custo e de limitada infraestrutura, visando a contribuir na eliminação ou redução da interferência causada pelos veículos mistos.

Na próxima seção, é apresentada a análise dos principais tipos de tratamento preferencial para o ônibus, pontualmente nas faixas exclusivas, com a finalidade de esclarecer a operação desses sistemas e poder encontrar suas diferentes variações, levando em consideração cada um de seus elementos e características de operação em conjunto com as medidas prioritárias adotadas, focando-se no caso do BRS.

Tabela 3-2 Medidas de prioridade no transporte público

TRATAMENTO	DEFINIÇÃO	Vantagens	Desvantagens	Tipo de infraestrutura afetada
Sinal de trânsito com prioridade	Na interseção, o sinal de tráfego com semáforo atua quando chega o ônibus, permitindo a passagem com prioridade. Pode ser ativa ou passiva. As passivas são funções pré-programadas no sinal que atuam, esteja o ônibus ou não. As ativas são referentes aos sinais de trânsito que são ativadas quando percebem a aproximação do ônibus.	•Redução dos atrasos; •Melhoria na confiabilidade.	Riscos de interromper o sinal de trânsito coordenado; Riscos na redução do nível de serviço quando a interseção está perto da máxima capacidade.	Interseção
Queue Bypass	Medida de tráfego que procura fornecer uma faixa prioritária para ônibus, principalmente nas interseções com semáforo.	•Redução dos atrasos nas filas da rampa no cruzamento.	•A faixa do ônibus deve estar disponível e deve ser mais longa que a fila gerada nas outras faixas.	Interseção
Queue Jump	Essa medida consiste em uma faixa lateral direita na interseção prioritária para ônibus, que pode acessá-la quando o sinal de trafego está em vermelho, podendo realizar subida e descida de passageiros antes que o sinal fique verde. Para as faixas centrais de tráfego misto, a faixa prioritária é liberada e o ônibus sai da faixa da direita e passa para a pista da esquerda, na frente do outro tráfego ainda parado pelo sinal em vermelho.	• Redução do tempo nas filas, nos	Requere pelo menos duas faixas no corredor do ônibus para evitar bloqueio do tráfego enquanto os passageiros abordam ou descem da unidade veicular; Precisa de um sinal semafórico especial; Redução do tempo de verde para os outros veículos; Os motoristas devem ficar atentos para o curto período de verde.	Interseção
Curb Extensions ou Bus stop bulbs	Curb extensions é uma extensão da calçada onde geralmente há um acostamento dedicado para o estacionamento na via com a finalidade de servir como ponto de parada dos ônibus sem entrar na zona do estacionamento. Também serve para estender a passagem de pedestres nas interseções.	Redução dos atrasos na entrada a faixa; Aumenta o conforto porque os ônibus não têm que buscar nos pontos de parada ou fora deles; Maior espaço para serviços no ponto de parada dos ônibus.	Requere pelo menos duas faixas no corredor do ônibus para evitar bloqueio do tráfego enquanto os passageiros abordam ou descem da unidade veicular; As faixas das bicicletas requerem uma consideração especial.	Calçada
Boarding Islands	Utilizado para separar faixas no mesmo sentido, sendo que a faixa da esquerda tem problemas de trânsito e atividade significativa de estacionamento. O transporte público pode circular pela faixa da direita mais rápida. Tem-se que prover de pontos de parada essa ilha e garantir a passagem dos pedestres com segurança.	•Aumenta a velocidade do ônibus ao permitir-lhes a utilização prioritária da faixa esquerda.	*Utiliza maior direito de passagem que outras medidas; *Devem-se considerar cuidadosamente questões de conforto e segurança para os pedestres.	Corredor

Tabela 3-2 Medidas de prioridade no transporte público

TRATAMENTO	DEFINIÇÃO	Vantagens	Desvantagens	Tipo de infraestrutura afetada
Restrição no estacionamento	Pode-se aplicar onde a atividade de estacionamento tem uma interferência alta no tráfego da via. Tem-se que levar em conta a influência das atividades comerciais do setor quando for implantada.	•Aumenta a velocidade do ônibus mediante a eliminação dos atrasos causados pelas manobras de estacionamento dos veículos; •Incrementa a capacidade e reduz os atrasos no tráfego.	*Pode afetar os usos do solo adjacentes ao corredor.	Corredor
Relocação dos pontos de ônibus	Alocação dos pontos de parada perto de atividades que geram e atraem viagens, assim como de interseções com semáforo para aproveitar a parada no vermelho durante a subida e a descida de passageiros.	*Utiliza os ciclos do sinal semafórico para benefício do ônibus.	•Incrementa-se a distância a pé dos usuários.	Corredor e calçada
Consolidação dos pontos de ônibus	Derivada da relocação dos pontos de parada de ônibus. Essa medida procura estabelecer pontos estrategicamente localizados depois da interseção com a finalidade de não ficar preso no sinal vermelho depois de carregar passageiros.	•Reduz o número de pontos de parada e consequentemente diminui seu tempo de viagem.	•Incrementa-se a distância a pé dos usuários; •Possibilidade que os pedestres não suportem caminhar até o próximo ponto de parada	Calçada
Exceção de giros proibidos	Para melhorar a operação das linhas de ônibus, no caso em que a restrição de giro geralmente à esquerda alongue seu trajeto e seja só por congestão do tráfego e não por segurança.	•Reduz o tempo de viagem; •Aumento da velocidade do ônibus, eliminando a necessidade de desvios.	Conflito direto com o tráfego misto; A problemática de segurança viária deve ser estudada cuidadosamente.	Corredor
Faixas exclusivas para ônibus	Geralmente utilizadas (uma ou duas faixas exclusivas) em vias com altos níveis de congestão e altos níveis de tráfego de ônibus.	 •Aumento da velocidade de operação; •Melhoria na confiabilidade; •Aumento na visibilidade do trânsito; •Diminuição nos tempos de viagem. 		Corredor

Fonte: Kittelson & Associates (2003); National Research Council Transportation Research Boar (2000)

3.3 SISTEMAS DE PRIORIZAÇÃO DO ÔNIBUS

Atualmente existem diferentes níveis de segregação dos sistemas de prioridade de ônibus para serem implementados, dependendo de variáveis operacionais de infraestrutura e demanda, do mesmo modo que as limitações do custo de implantação e infraestrutura. Na Tabela 3-3 se ilustram as características dos diferentes tipos de tratamento exclusivo da operação do transporte por ônibus.

Tabela 3-3 Níveis de segregação e tipos de tratamento/operação da via

Tipo de Tratamento / Operação	Variações	Características	Exemplo
Faixa exclusiva	No fluxo	Veículos do transporte coletivo trafegam em faixa exclusiva, mas sem elemento de separação física do tráfego geral. A faixa exclusiva costuma estar na lateral da via	BRS Bus Lane
(Figura Figura 3-1)	No contrafluxo	(embora possa estar também no centro) e ter ou não faixa dupla para ultrapassagem junto aos pontos de parada. Número considerável de cruzamentos em nível.	
Pista exclusiva (Ver Figura 3-2)	Em via de múltiplos usos	Veículos do transporte coletivo trafegam em faixa exclusiva com elemento de separação física do tráfego geral. A faixa pode estar no	Bus Way BRT
	Via exclusiva	centro ou nas laterais da via e ser ou não duplicada para ultrapassagem (especialmente junto aos pontos de parada). Poucos cruzamentos em nível.	
Via segregada		Veículos do transporte coletivo trafegam em via totalmente segregada, não sofrendo interferências longitudinais ou transversais de qualquer tipo. Não há cruzamentos em nível.	Ônibus Guiado

Fonte: Adaptado de NTU - Prioridade para o transporte coletivo urbano (2002).

A divisão dessas medidas preferenciais é distribuída em três tipos: não segregado fisicamente, segregada parcialmente e totalmente segregada, seguindo o mesmo princípio de exclusividade da via para o transporte público, como se definiu anteriormente.

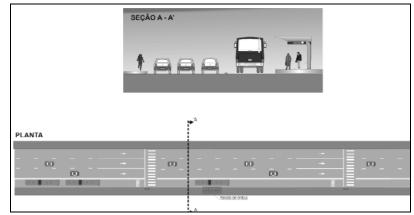


Figura 3-1 Faixas Laterais Exclusivas. Fonte: NTU & SEDU/P (2002) Prioridade para o Transporte Coletivo Urbano.

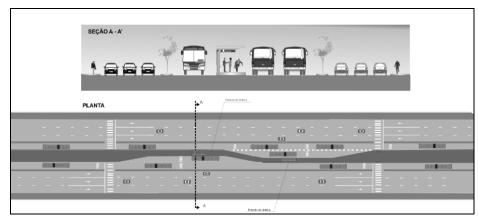
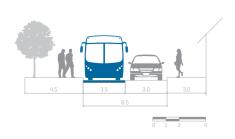


Figura 3-2 Faixas exclusivas junto ao canteiro central. Fonte: NTU & SEDU/P (2002) Prioridade

Complementando o tipo de tratamento para faixas exclusivas que foi apresentado na Tabela 3-3, na Cidade de Londres, o DETR⁷ criou um guia de assistência para os ônibus urbanos, que descreve como devem ser tratados esses sistemas preferenciais. Além de apresentar e definir os diferentes tipos de faixas exclusivas, eles acrescentam uma alternativa catalogada como "with flow bus lane" (faixas exclusivas para ônibus com fluxo), que é o mesmo conceito estudado das faixas exclusivas, mas com a permissão de acesso para outros tipos de veículos dentro do corredor exclusivo. Esses veículos possuem algumas características especiais, como: veículos totalmente lotados, veículos especiais para idosos, veículos médicos ou de serviços especiais. Esses casos serão tratados em seções subsequentes em melhor detalhe.

.


⁷ DETR - Department of the Environment Transport and the Regions.

3.4 FAIXAS EXCLUSIVAS

"A faixa exclusiva é a combinação de vários elementos simples que contribuem para a eficiente priorização do transporte público urbano por ônibus." Entretanto, deve-se considerar que na maioria dos casos essas faixas não são homogêneas e dependem da geometria da via e das características da demanda e da oferta, podendo ter variações em seu desenho e consequentemente diferenças operacionais.

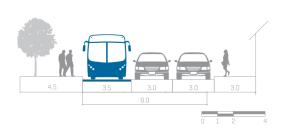
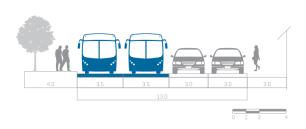
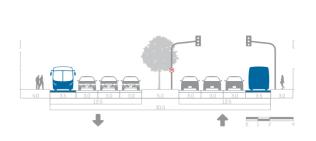

Um recente estudo da NTU (2013), referente às faixas exclusivas, propõe diferentes configurações de sistemas exclusivos de ônibus, levando em conta principalmente a infraestrutura instalada, segundo seu número de faixas para a operação do fluxo veicular e, a partir destas o número que fica reservado para os ônibus, como mostra a Tabela 3-4.

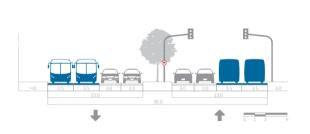
Tabela 3-4 Diferentes configurações do sistema de faixas exclusivas


Configuração 1:

Via local, com duas faixas de tráfego no mesmo sentido, das quais uma é exclusiva para circulação dos ônibus. Como principal desvantagem, não permite a ultrapassagem. Nesse caso, se recomenda a utilização de baias para a localização dos pontos de parada do ônibus.


Configuração 2:

Via coletora com 3 faixas de tráfego, sendo que uma é dedicada para o ônibus, não permitindo a ultrapassagem. Nesse caso, se recomenda a utilização de baias para a localização dos pontos de parada do ônibus.


Configuração 3:

Essa configuração está voltada para fluxos maiores em vias Tipo artéria com alto índice de transporte público e formação de comboios. Com 4 faixas de tráfego por sentido, sendo que duas são para o transporte exclusivo de ônibus, possibilitando a ultrapassagem. Nesse caso, não requer a implantação de baias para os pontos de parada de ônibus.

Configuração 4:

Voltada para vias de trânsito rápido (expressas) com controle de entradas e saídas dos fluxos nas interseções. Essa configuração está localizada em vias com sentido duplo e com quatro faixas de tráfego para cada sentido, sendo destinada uma faixa lateral direita por sentido como exclusiva para o ônibus, sem possibilidade de ultrapassagem. Nesse caso, recomenda-se a utilização de baias para a localização dos pontos de parada do ônibus.

Configuração 5:

Voltada para vias de trânsito rápido (expressas) com controle de acesso e entradas e saídas dos fluxos nas interseções. Essa configuração está localizada em vias em sentido duplo e com quatro faixas de tráfego por sentido. Destina duas faixas laterais na direita por cada sentido como exclusivas para o ônibus com possibilidade de ultrapassagem. Nesse caso, não necessita a implantação de baias para a localização dos pontos de parada do ônibus.

Fonte: Adaptado de NTU (2013)

Considerando essas configurações, é importante não esquecer os componentes da oferta e da demanda, pois, por exemplo, nas configurações 4 e 5 em vias expressas, chega-se a ter um fluxo muito elevado de veículos, podendo ser mais eficiente a implantação de sistemas somente para ônibus totalmente segregados nas faixas centrais Tipo BRT. Para otimizar o fluxo de transporte público e obter melhores resultados, no entanto, os custos de investimento seriam mais elevados.

Além dessas configurações, um sistema de faixas exclusivas tem alguns elementos e tratamentos preferenciais que o compõem, os quais se apresentam na seção seguinte.

3.4.1 ELEMENTOS PRINCIPAIS DE UMA FAIXA EXCLUSIVA

As faixas exclusivas para ônibus são essencialmente "pintura e sinalização", esquemas onde os ônibus são separados de outro tráfego por marcas rodoviárias que permitem dissuadir fisicamente a travessia por ambos, os ônibus e o tráfego geral (GARDNER, 1991). Além disso, a faixa exclusiva está constituída por uma conjunção de vários elementos simples, cada um deles promove uma contribuição relevante ao sistema em função da eficiente priorização do transporte público urbano por ônibus. Entre os principais elementos inerentes às faixas exclusivas, há três grupos de importante significância: i) Pontos de parada; ii) fiscalização e iii) sinalização horizontal e vertical.

i. Pontos de parada

De acordo com Molinero & Arellano (2002), o tratamento dos pontos de parada tem uma influência considerável na operação do transporte público devido à limitação da capacidade da linha, assim como o número de veículos da operação também influi na variação do consumo do combustível, dependendo do número de paradas. Além disso, a localização e o espaçamento devem ser adequados para atrair aos usuários.

"As medidas que podem contribuir para o incremento da capacidade de um ponto ou uma área de parada de ônibus implicam em ações relativas à tecnologia dos veículos, à organização das linhas e aos sistemas de cobrança de tarifas" (RECK et al. 1999). Entre os exemplos mais relevantes dessas ações, tem-se: maior número de portas de embarque, cobrança da tarifa externa ao veículo, redução das linhas e escalonamento em grupos de linhas por baia.

Na operação de transporte público, os pontos de parada têm influência ao:

- Limitar a capacidade da linha;
- Limitar o número de veículos da operação;
- Afetar a variação do consumo do combustível (número de paradas);
- Afetar na atração dos usuários, dependendo da localização e do espaçamento dos pontos.

Medidas para dar incremento na capacidade nas paradas de ônibus (RECK et al. 1999):

- Tecnologia dos veículos;
- Organização das linhas;
- Sistemas de cobrança de tarifas;
- Recuo (baia) da parada de ônibus: Pequena infraestrutura adaptada na lateral da via com mobiliário urbano para realizar as operações de embarque e desembarque de passageiros dos ônibus sem interferir no fluxo de veículos que utilizam a faixa exclusiva (NTU, 2013).

ii. Fiscalização

A fiscalização é a maneira de controlar que as medidas de priorização adotadas e as regras de operação estão sendo atendidas. Além disso, a escolha do método e a tecnologia de

fiscalização são determinantes para o êxito desses sistemas de transporte. Segundo Caruso (2005), entre as tecnologias aplicadas, tem-se:

- Tecnologias Disponíveis para a Identificação Automática de Veículos;
- *Global Positioning System* GPS;
- Telefonia Celular;
- Reconhecimento Ótico de Caracteres (OCR);
- Comunicação Dedicada de Curta Distância (DSRC);
- Radar eletrônico (pardal): equipamento eletrônico utilizado para fiscalização e autuação por meio da detecção da presença e utilização do espaço da faixa exclusiva por outros veículos que não sejam os permitidos (NTU, 2013).

iii. Sinalização

Destaca-se a importância da sinalização nos sistemas de transportes, pois define as regras e normas da operação de todos os concorrentes. Neste caso se ressalta a sinalização para sistemas de transporte priorizado em faixas exclusivas. E algumas características são descritas a seguir.

Como componente primordial na estrutura dos sistemas de transporte, destaca-se a sinalização vertical e horizontal de orientação e regulamentação do tráfego geral, a qual oferece informações sobre:

- Início e término dos trechos com faixa exclusiva;
- Horário de funcionamento da faixa exclusiva, quando houver;
- Regulamentação de restrições de acesso do tráfego geral às faixas exclusivas que não apresentam segregação física e das condições de circulação dos veículos de transporte coletivo urbano;
- Regulamentação de permissões de acesso do tráfego geral a determinados e limitados trechos da faixa exclusiva ao transporte coletivo urbano para permitir movimentos de conversão;

- Regulamentação de estacionamentos junto às vias onde há faixas exclusivas, indicando os respectivos horários e locais de permissão e/ou proibição;
- Regulamentação de operações de carga e descarga junto às vias que possuam faixas exclusivas, indicando os respectivos horários e locais de permissão e/ou proibição;
- A linha demarcadora a ser aplicada no pavimento deverá ser contínua, salvo nos cruzamentos e poderá ser complementada por outros símbolos gráficos aplicados no pavimento ("BUS" ou ícone de um ônibus);
- Associada às ações de sinalização horizontal, deverá ser implantada a sinalização vertical de regulamentação que indique a faixa da via de uso exclusivo para o transporte coletivo urbano. Essa sinalização visa a regulamentar o uso do faixa, indicar seu início e término e os movimentos de conversão à direita ou à esquerda. Também deve ser implantada sinalização vertical de advertência, principalmente junto às vias transversais, indicando a existência da faixa exclusiva para o transporte coletivo naquela via;
- Ondulação transversal (tachão): é um elemento físico de dimensões reduzidas que serve como barreira de segregação das faixas para o ônibus do tráfego misto e também como inibidor da invasão do espaço do transporte público;

3.4.2 Interferências dos veículos nas faixas exclusivas

No transporte público prioritário, segundo o nível de exclusividade do sistema, é possível encontrar algumas ou nenhuma interferência sobre o direito de passagem, sendo estas catalogadas como longitudinais ou transversais.

No sistema de faixas exclusivas, as interferências longitudinais são originadas por outros veículos que se movimentam na mesma direção em que trafega o veículo de transporte coletivo, ao longo da via. Essas interferências usualmente são geradas por manobras de ultrapassagem, pela fricção lateral ou por movimentos para entrar em destinos situados na faixa lateral da via (garagens e giros à direita).

As interferências transversais se dão nas vias ou nas passagens obliquas ao corredor preferencial devido aos fluxos de veículos ou de pessoas que trafegam ou cruzam o corredor. Essas interferências contribuem para a redução da velocidade e alteração dos tempos de viagem do transporte público coletivo. As medidas de prioridade visam a eliminar ou mitigar

a problemática gerada pela mencionada interferência. No entanto, segundo o nível de prioridade dos sistemas de faixas exclusivas, essas interferências podem ocorrer com alguns tipos de veículo diferentes ao ônibus com características especiais, em horários estabelecidos, ou em manobras permitidas que precisam do acesso à faixa preferencial.

A DETR (2001) trata em seu estudo as faixas exclusivas e a descrição na permissão da utilização dessa faixa por outros tipos de veículo, considerando algumas questões que devem ser levadas em consideração nesse contexto, as quais se listam a seguir.

- segurança viária;
- operação do corredor de ônibus, incluindo potenciais atrasos de ônibus;
- atrasos para outros tráfegos;
- legalidade na definição das classes de veículos;
- execução;
- qualquer impacto sobre a repartição modal.

Existem diferentes classes de veículos que podem ser autorizados a utilizar os corredores de ônibus exclusivos, entre os quais estão: serviços *dial-a-ride*⁸, bicicletas, motos, táxis e veículos de mercadorias. Os argumentos para permissão são descritos da seguinte maneira:

i. Bicicletas:

Considerando os locais onde não há ciclovias ou faixas com um alinhamento adequado junto à faixa exclusiva e que os ciclistas são mais propensos a se envolver em um acidente ao trafegar pelas faixas do tráfego geral, elas podem ter permissão para circular na faixa exclusiva. No entanto, as faixas exclusivas devem ter pelo menos de 3,5 a 4 ou mais metros de largura para que os ciclousuários e os ônibus possam compartilhar a faixa com segurança.

ii. Motos

A permissão de motos nas faixas exclusivas não é muito aceita. A DETR (2001) recomenda não permitir esses tipos de veículos nas faixas, mas, em alguns sistemas já implantados, são

⁸ É um serviço público que fornece transporte porta a porta para pessoas com incapacidade física ou com problemas de saúde, que são incapazes de utilizar o transporte público convencional.

permitidas com o argumento que não há estudos que demostrem que o desempenho das faixas exclusivas e o aumento na acidentalidade sejam afetados pela inclusão desse tipo de veículo.

iii. Táxis

Os táxis representam uma parte importante do sistema de transporte público. Sua ocupação média é mais elevada do que nos outros veículos nos períodos em que a faixa de ônibus está em operação, podendo ser apropriado permitir que eles utilizem os corredores exclusivos de ônibus. No entanto, para isso ocorrer, é necessário que os táxis sejam facilmente identificáveis por meio de cores ou marcas estabelecidas.

É importante realizar avaliações da interação entre os táxis e os ônibus quando compartilham a faixa exclusiva, especialmente se os táxis causarem atrasos indevidos aos ônibus na faixa prioritária. Neste caso, não se deveria permitir a circulação desse tipo de veículos. Não é recomendado o uso dos corredores exclusivos por veículos privados de aluguel ou táxis especiais, pois geralmente a maioria não se distingue dos carros particulares.

iv. Veículos de mercadorias

Veículos que transportam mercadorias de alto valor ou bens que são importantes para a economia nacional, podendo ter o benefício do uso dos corredores exclusivos de ônibus.

v. Dial-a-Ride

Serviços para pessoas com deficiência são fornecidos em algumas áreas por meio do uso de micro-ônibus ou vans em locais que foram removidos (ou não equipados), a fim de acomodar os usuários de cadeira de rodas. Alguns desses veículos não se enquadram na definição de um ônibus porque eles não possuem assentos suficientes, mas normalmente deve ser permitida a utilização da faixa exclusiva.

vi. Veículos mistos com alta ocupação

Veículos particulares que levam três ou mais passageiros, podendo ser autorizado a entrar na faixa exclusiva com a principal vantagem de incentivar o uso da partilha do veículo por pessoas que antes viajavam de carro sozinhos, reduzindo assim a quantidade total de tráfego.

3.5 EXEMPLOS DE UM SISTEMA PRIORITÁRIO DE TRANSPORTE PÚBLICO – O BRS

3.5.1 O BRS NO RIO DE JANEIRO

O Rio de Janeiro é uma cidade de grandes contrastes, com um alto componente turístico e uma população urbana próxima aos 6,5 milhões de habitantes, o que equivale aos 3% do total do território brasileiro (IBGE - Instituto Brasileiro de Geografia e Estatística, 2010). Encontra-se em uma expansão da rede de transportes, acompanhada pelo crescimento urbano em um contexto em que o ônibus ainda predomina e, ao mesmo tempo, aumenta os índices de motorização, que em conjunto gera um caos na mobilidade da cidade.

Com a finalidade de mitigar essa problemática, a cidade tem optado por uma série de medidas prioritárias, entre as que se encontra o BRS, o qual tem demostrado ser um exemplo de sucesso do transporte público de faixas exclusivas para ônibus.

O BRS do Rio de Janeiro iniciou suas operações em Copacabana no ano 2011 e desde então continua crescendo, chegando até os locais onde a problemática do transporte tem impactado na mobilidade diário. Até outubro de 2013, o BRS tinha sido implantado em três grandes zonas da cidade: Zona Sul, Centro e Zona Norte, conforme mostra a Figura 3-3.

Junto com Copacabana, Ipanema e Leblon, foram os primeiros locais a presenciar a implantação do BRS na zona sul. Após demonstrar sua efetividade, foram implantados novos corredores no Centro e na zona norte da cidade. No centro da cidade se alocou o BRS em vias de alta demanda de viagens em transporte público: Avenida Antônio Carlos, Avenida Primeiro de Março, Avenida Rio Branco e Avenida Presidente Vargas. No Estácio foi implantado o BRS na Rua Salvador de Sá e na Rua Frei Caneca. E, por fim, na zona norte, na Tijuca, nas Ruas Heitor Beltrão e Doutor Satamini. A Tabela 3-5 apresenta em resumo as vias afetadas por cada corredor do BRS implantado e algumas de suas características geométricas.

Figura 3-3 BRS implantados Rio de Janeiro

Tabela 3-5 Locais do BRS no Rio de Janeiro

Tabela 3-3 Locais do BRS no Rio de Janeiro								
ZONA	CORREDOR	DATA DE INÍCIO	EXTENSÃO	N° FAIXAS SENTIDO	N° FAIXAS EXCLUSIVAS			
		• Av. Nossa Senhora de Copacabana: 19/02/2011	• Av. N. Sra. Copacabana: 4 km	4	2			
SUL	BRS COPACABANA	• R. Barata Ribeiro e R. Raul Pompeia: 09/04/2011	• Barata Ribeiro/Raul Pompéia: 3,5 km	4	2			
	BRS	Av. Ataulfo de Paiva e R. Visconde de Pirajá: 20/08/2011		3	1			
	IPANEMA/LEBLON	R. Prudente de Morais e Av. General San Martin: 08/10/2011	3,5 km em cada sentido	3	1			
	BRS RIO BRANCO	29/12/11	1,3 km	5	3			
	BRS PRESIDENTE ANTÔNIO CARLOS E PRIMEIRO DE MARÇO	17/12/11	1,2 km	4	2			
CENTRO		• Pistas Centrais: 06/03/2012	3 km em cada pista, em cada	4	2			
	BRS PRESIDENTE VARGAS	• Pistas Laterais: 12/04/2012	sentido	4	2			
	BRS ESTÁCIO	Rua Salvador de Sá e Frei Caneca: 26/08/13	3,0 km	3	1			
NORTE	BRS TIJUCA	Heitor Beltrão, Doutor Satamini e Rua Haddock Lobo: 24/09/13	3,1 km	3	1			

Fonte: adaptado de Fetranspor (2013)

Além da utilização e da demarcação de faixas exclusivas, foi necessária a implantação de novas infraestruturas de transporte e de dispositivos de trânsito, assim como alterações nos trajetos de algumas linhas e mudanças nas regras de operação do transporte coletivo e particular.

Os pontos de parada foram realocados e modernizados, fornecendo abrigo aos usuários, informações da operação dos ônibus e identificação das linhas que param em cada ponto. Além disso, foram estabelecidos sistemas de fiscalização eletrônica por meio de câmeras para controlar a invasão das pistas exclusivas e o estacionamento proibido para veículos mistos. A seguir, as medidas de tratamento preferencial, adotadas como complementares ao sistema, são descritas em detalhe.

• Implementação dos pontos de parada: foram implementados pontos de parada fixos escalonados, As linhas se dividiram em vários grupos, geralmente entre três e cinco, mas, em alguns casos, esse número excede, chegando a sete, devido às características da demanda e à inclusão de novas linhas, as quais anteriormente não passavam pelos corredores BRS implantados (BRS1, BRS2, BRS3, BRS4, BRS5, BRS6 e BRS7). Inicialmente essa divisão foi realizada segundo o tipo de linha (BRS1-linhas radiais; BRS 2-intra-áreas; BRS3-Interáreas). No entanto, depois de alguns reajustes, a divisão dos pontos de parada ficou organizada por tipo de consórcio e operador de cada linha, conforme se ilustra na Figura 3-4.

Cada ponto de parada foi adaptado com mobiliário urbano e *layout* com informações da operação do sistema, tais como: linhas que param no ponto, identificação do ponto, informação dos recorridos das rotas, mapa informativo do sistema e informações dos pontos próximos (ver Figura 3-5).

A separação média entre os pontos de paradas do mesmo grupo é de 464m aproximadamente e, entre cada ponto de parada consecutivo, sem importar o grupo, de aproximadamente 144 metros, como se ilustra na Tabela 3-6.

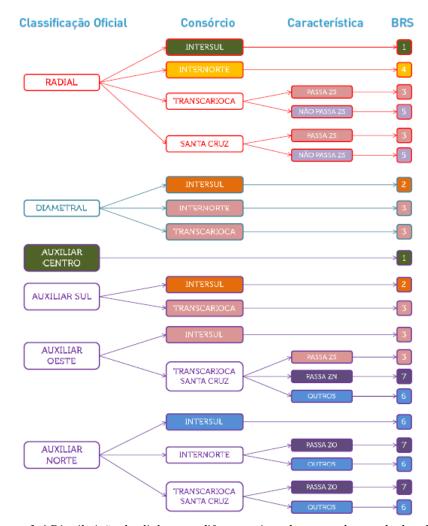


Figura 3-4 Distribuição das linhas nos diferentes tipos de pontos de parada do o BRS Fonte: Fetranspor (2013)

Figura 3-5 Mobiliário urbano, pontos de parada BRS.

Tabela 3-6 Resumo de Pontos de parada Corredores BRS							
CORREDOR (PISTA/SENTIDO)	Tipos de parada BRS	Número de pontos de parada	Distância média (m) dos pontos de parada por grupo	Distância média (m) pontos de parada			
BRS COPACABANA (SENTIDO LEME, AV. NOSSA SENHORA DE COPACABANA)	BRS1, BRS2, BRS3, INTER	19	428	130			
BRS COPACABANA (SENTIDO IPANEMA, R. BARATA RIBEIRO - R. RAUL POMPEIA)	BRS1, BRS2, BRS3, INTER	20	412	126			
BRS IPANEMA/LEBLON (SENTIDO COPACABANA, AV. ATAULFO DE PAIVA - R. VISCONDE DE PIRAJÁ)	BRS1, BRS2, BRS3, INTER	20	429	193			
BRS IPANEMA/LEBLON (SENTIDO GÁVEA, R. PRUDENTE DE MORAIS - AV. GENERAL SAN MARTIN)	BRS1, BRS2, BRS3, INTER	17	411	184			
BRS RIO BRANCO	BRS1, BRS2, BRS3, BRS4, BRS5	11	426	73			
BRS PRESIDENTE ANTÔNIO CARLOS E PRIMEIRO DE MARÇO (PISTA CENTRAL)	BRS1, BRS2, BRS3, BRS4, BRS5	2	322	232			
BRS PRESIDENTE ANTÔNIO CARLOS E PRIMEIRO DE MARÇO (PISTA LATERAL)	BRS1,BRS2, BRS3, BRS4, BRS5	4	695	306			
BRS PRESIDENTE VARGAS (SENTIDO ZONA NORTE, PISTA LATERAL)	BRS1, BRS2, BRS3, BRS4, BRS5, INTER	19	546	82			
BRS PRESIDENTE VARGAS (SENTIDO ZONA NORTE, PISTA CENTRAL)	BRS1, BRS2, BRS3, BRS4, BRS5, INTER	16	544	91			
BRS PRESIDENTE VARGAS (SENTIDO CANDELÁRIA, PISTA LATERAL)	BRS1, BRS2, BRS3, BRS4, BRS5, INTER	18	424	103			
BRS PRESIDENTE VARGAS (SENTIDO CANDELÁRIA, PISTA CENTRAL)	BRS1, BRS2, BRS3, BRS4, BRS5, INTER	15	593	159			
BRS ESTÁCIO (SENTIDO CARIOCA - ESTÁCIO)	BRS1, BRS3, BRS4, BRS5,INTER	17	403	90			
BRS TIJUCA (SENTIDO ESTÁCIO - TIJUCA)	BRS1, BRS2, BRS4, BRS5, BRS6, BRS7, INTER	16	398	103			
MEDIA GERAL	TOTAL	194	464	144			

Fonte: adaptado de Fetranspor (2013) e http://brsrio.com.br/

• Reorganização e otimização da operação das linhas de ônibus: as linhas de ônibus existentes são divididas em grupos, segundo seu tipo de parada (BRS1, BRS2, BRS3, BRS4, BRS5, BRS6 e BRS7), com a finalidade de serem distribuídas e assim evitar a conformação de filas nos pontos de parada. Em outras palavras, cada grupo tem um ponto de parada próprio ao longo do corredor BRS. Dessa maneira, mitiga-se o problema de

capacidade dos pontos de parada. Além disso, algumas das linhas foram reajustadas e recortadas em seu trajeto, dependendo da sua demanda, diminuindo dessa maneira a frota existente e, consequentemente, melhorando o tempo de viagem. A Tabela 3-7 apresenta a quantidade de linhas atuais e a redução aproximada da frota nesses corredores com a implementação do BRS, segundo dados da Fetranspor (2013).

Tabela 3-7 Quantidade de linhas e redução da frota no BRS

CORREDOR	QUANTIDADE DE LINHAS	FROTA OPERANTE ANTES DO BRS	REDUÇÃO DE FROTA APÓS IMPLANTAÇÃO DO BRS
BRS COPACABANA	91	1360	20% (em média)
BRS IPANEMA/LEBLON	64	1062	10% nas linhas que ainda não passavam pelo BRS de Copacabana e 5% nas que já eram do BRS
BRS RIO BRANCO	93	1545	10% (em média)
BRS PRESIDENTE ANTÔNIO CARLOS E PRIMEIRO DE MARÇO	82	1391	10% (em média)
BRS PRESIDENTE VARGAS	216	2505	10% (em média)
BRS ESTÁCIO	57	1104	-
BRS TIJUCA	33	765	-

Fonte: adaptado de Fetranspor (2013)

• Implantação de Sinalização vertical e horizontal:

Considerando o alto grau de importância que tem a sinalização dentro do sistema prioritário de transporte, o BRS adota, em termos de sinalização horizontal, linhas de cor azul, dividindo e limitando as faixas exclusivas, acompanhadas da inscrição "ÔNIBUS" sobre cada faixa (*ver* Figura 3-6). Além disso, em alguns trechos há uma linha azul pontilhada para sinalizar a ultrapassagem dos ônibus que saem da faixa preferencial. Essa é usualmente utilizada nos pontos de parada em vias que têm somente faixa exclusiva.

Por outro lado, em termos de sinalização vertical, o corredor apresenta placas indicativas de preferência dos ônibus e de ruas laterais próximas com acesso à direita, assim como períodos de funcionamento do sistema. Também há nos acessos próximos ao corredor do BRS placas indicando a distribuição das faixas, ressaltando a faixa exclusiva. Na Figura 3-7 se ilustram os diferentes tipos de sinalização vertical presentes no sistema, entretanto, é importante mencionar que, além desse tipo de sinalização, o sistema utiliza a sinalização tradicional.

Figura 3-6 Sinalização Horizontal Corredor BRS.

Figura 3-7 Sinalização vertical corredor BRS

• Regras de operação do sistema:

Para dar claridade e funcionalidade ao sistema, foram criadas as seguintes regras de operação das faixas exclusivas, considerando a prioridade do ônibus e as restrições dos veículos mistos.

Para Ônibus:

- Circulação dentro da faixa preferencial, delimitada pela faixa azul;
- Embarque e desembarque de passageiros nos pontos relacionados a cada tipo de linha (BRS 1, BRS 2 e BRS 3 BRS 4, BRS 5 BRS 6 e BRS 7).

Para Táxis:

- Só poderão circular no interior da faixa azul se estiverem ocupados, para efetuar manobra de giro à direita ou acessar garagens ou baias;
- O embarque e desembarque de passageiros deverá ser feito do lado esquerdo da via, nas ruas transversais, nas garagens ou ao lado direito quando existem baias;

• Táxis especiais adaptados para portadores de necessidades especiais poderão circular no corredor para efetuar embarque e desembarque de passageiros.

Para veículos escolares licenciados:

• Poderão efetuar embarque e desembarque de alunos no lado direito da via.

Demais veículos:

- Terão que circular nas duas pistas à esquerda, mas, para dobrar em ruas ou acessar garagens à direita da via, o acesso será permitido;
- Operações de carga e descarga: terão que ser feitas em locais destinados para esse fim.

3.5.2 RESULTADOS DA IMPLANTAÇÃO

Esse sistema trouxe grandes benefícios para a Cidade de Rio de Janeiro, como a melhoria na velocidade de operação, a redução da emissão de gases de efeito estufa (CO2), a diminuição da sobre oferta de ônibus, o aumento da velocidade de operação, entre outros.

Segundo Fetranspor (2011) e Bartholomeu (2011), depois da implantação do sistema BRS nas áreas saturadas da Avenida Nossa Senhora de Copacabana, incrementou-se a velocidade média de operação de 13 para 24 km/h aproximadamente, embora a frota operante tenha diminuído em 20% e os tempos de viagem baixaram 50%. Essa experiência bem sucedida foi duplicada, porém, em outros setores da cidade com a expectativa de incrementar esse número nos próximos meses.

De acordo com uma pesquisa da Fetranspor (2011a) realizada em Copacabana antes e depois da implantação do BRS junto a uma amostra de 400 usuários aproximadamente, se verificou que 64% das viagens são realizados em ônibus, 16% em metro, 7% em carro particular e os 8% resultantes em outros modos. Essa relação, entretanto, não mudou depois da implantação. No entanto, a percepção dos usuários mudou significativamente. Antes do BRS, 22% dos usuários achavam que o transporte em ônibus por Copacabana era bom e ótimo, depois esse valor subiu para 50% (Ver Figura 3-8).

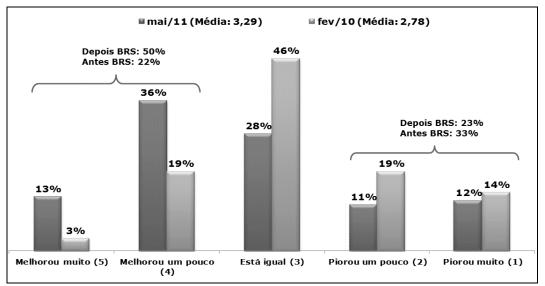


Figura 3-8 Percepção do BRS antes e depois da implantação. Fonte: FETRANSPOR (2011).

3.5.3 FORTALEZA BRSFOR (BUS RAPID SERVICE DE FORTALEZA)

O BRSFOR da Cidade de Fortaleza está baseado no caso do BRS do Rio de Janeiro. Esse sistema foi implementado inicialmente como prova piloto na Avenida Bezerra de Menezes na parte central da cidade. Essa avenida é composta por duas pistas, cada uma com 4 faixas por sentido de circulação, das quais as duas do lado direito são utilizadas de maneira exclusiva para o tráfego de ônibus urbano, interurbano, vans e táxis com passageiros (Prefeitura de Fortaleza, 2012). Ver Figura 3-9.

Figura 3-9 Distribuição do sistema Preferencial em cada pista Fonte: Prefeitura de Fortaleza (2012)

A Avenida Bezerra de Menezes possui uma extensão de 3,3 km, considerando o trecho que se projeta desde o cruzamento com a Avenida Humberto Monte até o início da Rua Meton de Alencar. O volume de tráfego nessa avenida é elevado, chegando a atingir, na hora pico, 3.500 veículos/hora, dos quais se estima que 300 são ônibus. A Tabela 3-8 apresenta esses dados com maior detalhamento (VASCONCELOS, 2012).

Tabela 3-8 Caracterização da demanda e oferta no corredor

- and that the contraction of th								
Frota de Veículos	Demanda Catracada	Demanda Integrada	Demanda Total	Frequência (Ônibus/hora)				
372,0	162,287	24,490	186,777	256,5				

Fonte: Vasconcelos (2012)

O sistema de paradas se compõe por 13 pontos de paradas globais, os quais se dividem em 3 pontos: o BRSfor1, o BRSfor2 e o BRSfor3, com a finalidade de distribuir a frota em cada ponto e assim evitar congestionamento e filas.

Como resultado da implantação do sistema, se observou um aumento significativo na velocidade operacional dos veículos, aproximadamente de 10 para 17 km/h, como se apresenta na Figura 3-10.

VELOCIDADE MÉDIA ANTES DO BRS INICIAR A OPERAÇÃO. DIA 10/08/2012	PICO MANHÃ DE 06:00 AS 08:00	FORA PICO MANHÃ DE 08:01 AS 17:00	PICO NOITE DE 17:00 AS 19:00	FORA PICO NOITE DE 19:01 AS 23:59
	10,08	13,24	12,19	20,36
VELOCIDADE MÉDIA APÓS INICIAR A OPERAÇÃO DO BRS. DIA 21/08/2012	PICO MANHÃ DE 06:00 AS 08:00	FORA PICO MANHÃ DE 08:01 AS 17:00	PICO NOITE DE 17:00 AS 19:00	FORA PICO NOITE DE 19:01 AS 23:59
	16,67	18,11	15.84	23,91

Figura 3-10 Comparação da velocidade antes e depois da implementação do sistema. Fonte: Vasconcelos (2012)

Outro aspeto importante foi o aumento nos níveis de ocupação dos veículos, que trouxe melhoria no aproveitamento por viagem, sem perder o padrão de atendimento.

3.5.4 DISCUSSÃO

O BRS tem demostrado ser um sistema de transporte público eficiente e de sucesso, representado pelos casos implementados no Brasil. Desses casos, se ressalta a correta utilização e implantação das diferentes medidas complementares do tratamento preferencial,

tais como, alocação e consolidação dos pontos de parada para ônibus, fiscalização mediante tecnologia ITS, sinalização no corredor e nos pontos de parada, assim, como reorganização e diminuição das linhas de transporte público. No entanto, existem várias medidas de tratamento preferencial que ainda não foram exploradas principalmente nas interseções, cuja aplicação poderia melhorar substancialmente o desempenho do sistema, como é o caso das sinalizações prioritárias, *Queue Jump, Queue Bypass*, entre outras.

No caso da entrada de veículos na faixa exclusiva do ônibus, na literatura se menciona a possibilidade de permissão para o veículo individual de alta capacidade (três ou mais ocupantes), embora seja uma medida prioritária com amplos benefícios, a capacidade da via vai contra a premissa fundamental do transporte exclusivo de priorizar as viagens em transporte público em relação às viagens nos veículos individuais, o que não seria muito recomendável. No entanto, essa medida pode ser adotada em vias onde a corrente veicular dominante é dos veículos individuais, podendo ser criadas faixas exclusivas somente para esse tipo de veículo nas condições mencionadas.

Outro aspecto importante que diz respeito às interferências nos corredores exclusivos é o tema das bicicletas e ciclousuários. Nos casos estudados não se registram medidas para tratar esse modo sobre as faixas exclusivas, considerando que não há infraestruturas alternativas para esse tipo de transporte nesses corredores.

Outro ponto não observado na bibliografia, e que também não se dá importância nos casos estudados, é o fluxo dos veículos mistos que entram e saem das garagens, nos casos onde a faixa exclusiva está localizada em vias locais ou coletoras. Vale a pena recomendar o estudo desses fluxos para quantificar e avaliar os possíveis impactos que isso possa ter nos sistemas de faixas exclusivas, assim como avaliar as diferentes alternativas desses sistemas.

3.6 PROPOSTA DE SUBCLASSIFICAÇÃO DOS SISTEMAS DE FAIXAS EXCLUSIVAS SEGUNDO SEU NÍVEL DE PRIORIDADE E INTERFERÊNCIAS

Nas seções anteriores, foram examinadas diferentes medidas de tratamento preferencial para ônibus, assim como sua relação com os sistemas de faixas exclusivas e os diferentes tipos de configurações que podem ocorrer em um corredor de transporte.

Com tudo, esta pesquisa propõe uma subdivisão do tratamento preferencial para ônibus especificamente nas faixas exclusivas que, conforme mencionado na Seção 2.2.1, pertencem ao grupo de direito de passagem Tipo C estabelecido por Vuchic (1981). Para esta proposta se consideraram as diferentes configurações de operação das faixas exclusivas, o tipo de tratamento preferencial, a operação do BRS e os possíveis tipos de veículos que podem ou não interferir nas faixas exclusivas, que para os casos apresentados nesta dissertação são os táxis, os veículos que saem e entram nas garagens e os veículos que têm que entrar na faixa para realizar o giro à direita. A finalidade é contribuir com uma subdivisão detalhada da classificação de Vuchic (1981), como foi mencionado. Na Tabela 3-9 a seguir são apresentadas as diferentes subclassificações escolhidas a partir das caraterísticas mencionadas.

Tabela 3-9 Alternativas de subclassificação de faixas exclusivas por interferências

Tratamento e interferências	C0	C1	C2	С3	C4	C5	C6	C7	C8
Fiscalização	Sem Fiscalização	Fiscalização Eletrônica							
Tipo de pontos de parada	Com parada fixa	Pontos de parada escalonado							
Prioridade de semáforo	Sem prioridade	Sem prioridade	Sem prioridade	Sem prioridade	Sem prioridade	Sem prioridade	Sem prioridade	Com prioridade	Com prioridade
Número de faixas exclusivas	1	1	1	1	2	2	2	1	2
Táxi no fluxo	Sim	Sim	Sim	Não	Sim	Sim	Não	Não	Não
Autos conversão à direita	Sim	Sim	Não	Não	Sim	Não	Não	Não	Não
Tipo de Prioridade	Preferencial	Exclusivo com tolerância	Exclusivo com tolerância	Exclusivo com tolerância	Exclusivo com tolerância	Exclusivo com tolerância	Exclusivo	Exclusivo	Exclusivo

Na Tabela 3-9 são apresentados os cenários (C0, C1, C2, C3, C4, C5, C6, C7, C8). A subclassificação tipo C0 representa um sistema com tratamento preferencial, com interferência de todos os tipos de veículos estudados, sobre a faixa prioritária com uma faixa exclusiva para ônibus sem nenhuma classe de fiscalização. Os tipos C1 e C4 representam sistemas com as mesmas interferências entre eles, mas, com a diferença em seu número de faixas exclusivas (1 e 2 respectivamente), igualmente para C2 e C5. No entanto, esses últimos se diferenciam por não permitir a entrada de veículos com conversão à direita na faixa exclusiva. Como consequência, esses veículos têm que procurar alternativas, fazendo giro à esquerda. Nos Cenários C3 e C6, a restrição é maior, proibindo o tráfego de todos os veículos, onde só podem circular os ônibus e os veículos que saem das garagens. E para finalizar, são propostos os Cenários C7 e C8, os quais têm prioridade absoluta na faixa exclusiva, sem interferências dos outros veículos. Além disso, adota-se prioridade no sinal de tráfego para os ônibus BRS.

3.7 SÍNTESES DO CAPÍTULO

Os sistemas preferenciais de ônibus constituem um importante aporte no desempenho do transporte público das cidades, na qualidade de vida dos usuários e consequentemente no gerenciamento da mobilidade. É importante destacar que o êxito desses sistemas de transporte priorizados pode estar na adequada intervenção de seus elementos e fatores que compõem a estrutura operacional do sistema, entre os que se destacam os pontos de parada, o tipo de via, a oferta de transporte com os transportados nos veículos mistos e, por último, o método de fiscalização.

É importante ressaltar a permissão de entrada e saída de outros tipos de veículos na faixa exclusiva, como é o caso dos táxis com passageiros. No entanto, essas práticas devem ser bem estudadas porque podem interferir no sistema prioritário de ônibus, gerando um alto impacto e causando a nulidade dos benefícios desses sistemas exclusivos. Por isso, se recomenda estudar com maior detalhe, levando em consideração que o ônibus é objeto de prioridade e não o veículo individual.

A bicicleta tem um papel importante no transporte sustentável, não devendo ser esquecida no momento de implantar esses sistemas exclusivos. Nos casos apresentados do BRS, não se tem explorado muitas ações ou medidas quanto à operação das bicicletas nos corredores exclusivos, o que deveria ser considerado.

As configurações apresentadas na Seção 3.6 são uma extração representativa dos diferentes tipos de sistemas de faixas exclusivas que podem ocorrer em um corredor preferencial, sob a classificação tipo C no direito de passagem, com foco nos casos brasileiros (o BRS). No entanto, é possível que haja mais configurações com maiores elementos que não foram estudados neste trabalho, pois não se encaixam na abordagem desta pesquisa.

Nos próximos capítulos, será analisada detalhadamente esta proposta, avaliando algumas das subclassificações apresentadas, utilizando ferramentas de simulação por meio de um estudo de caso.

4 A SIMULAÇÃO COMO FERRAMENTA DE ANALISES

Nos capítulos anteriores, foi demonstrado que os sistemas de faixas exclusivas para ônibus oferecem uma alternativa eficiente de baixo custo de investimento e curtos prazos de implantação, a fim de tratar a problemática causada pelo aumento significativo da demanda, do tráfego e da congestão na rede de transportes. Essa alternativa nos últimos anos tem ganhado força, principalmente no Brasil, com os sistemas de transporte BRS. Surge então a importância de estudá-la e analisá-la, com a premissa de planejar e executar esses sistemas de forma estratégica.

Neste contexto, os modelos de simulação aparecem como uma interessante ferramenta de análise que fornece a representação da realidade, mediante modelos matemáticos psicológicos e estatísticos, com o objetivo de predizer o comportamento do sistema ante as ações de suas variáveis físicas em um ambiente totalmente computacional (ALMONACID, 2007).

Neste caso, são apresentados os principais conceitos da simulação do tráfego e a descrição de seu processo, focados na simulação das faixas exclusivas, visando a entender quais são os dados de entrada e de saída, assim como os diferentes modelos que se podem utilizar. Por fim, uma descrição do modelo adotado para aplicá-lo no caso de estudo que será apresentado no Capítulo 5.

4.1 TEORIAS DE MODELOS DE TRÁFEGO

Os modelos de simulação de tráfego são considerados na literatura como uma forma de representar matematicamente o comportamento dos veículos em um sistema urbano. Esses modelos são caracterizados por descrever sistemas dinâmicos onde a variável independente sempre é representada pelo tempo, que pode ser contínuo ou discreto.

Os modelos de simulação contínuos procuram conhecer os valores de saída em todos os instantes de um intervalo de tempo. Os discretos procuram conhecer o comportamento em grupos de tempo (LIEBERMAN & RATHI, 1975).

Geralmente os modelos de simulação assistida por computadores utilizam os modelos dinâmicos discretos que representam os sistemas do mundo real. Esses modelos podem ser representados de duas formas: i) Eventos discretos e ii) Tempos discretos. Nesses modelos, o valor das variáveis só pode mudar em instantes específicos, permanecendo constante o resto do tempo, sendo que essas mudanças, algumas vezes repentinas, se denominam eventos.

A diferença entre os modelos de tempo discreto e eventos discretos é que no primeiro deles são produzidos instantes de tempo equidistantes e predefinidos, o que geralmente não passa no segundo modelo.

Segundo o detalhamento dos resultados numéricos que se querem obter, se aplica um modelo ou outro. Modelos mais detalhados fazem uso dos modelos de tempos discretos, enquanto os problemas gerais utilizam modelos de eventos discretos. Esses modelos podem se classificar em três tipos: macroscópicos, mesoscópicos e microscópicos. "Essa organização é definida principalmente pela maneira como os modelos representam o fluxo de tráfego, ou ainda, de acordo com a natureza do sistema que estes tentam representar" (MAIA, 2007).

Esses modelos se diferenciam principalmente pelo nível de detalhamento das variáveis que se pretende estudar. O modelo microscópico estuda variáveis mais detalhadas e o macroscópico, variáveis em um nível global. Enquanto que os mesoscópicos analisam variáveis em um nível intermédiário, como é ilustrado na Figura 4-1.

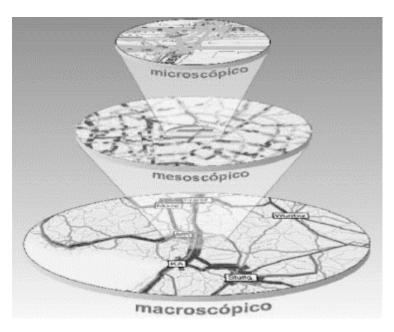


Figura 4-1 Modelos de estudo de trafego e transporte Fonte: Jimenez (2011)

4.1.1 TEORIA MACROSCÓPICA

Neste modelo, a individualidade dos veículos não é estudada, mas são considerados os comportamentos e atividades agregadas da corrente veicular quando se deslocam pelas vias da

rede, descrevendo um baixo nível de detalhe. Por sua natureza, esses são modelos contínuos que fazem uso extensivo de equações diferenciais e não distinguem veículos (JIMENEZ, 2011). Geralmente são utilizados em áreas extensas com um nível de complexidade de alta demanda da rede, como a extensão de uma cidade.

Ressalta-se que a velocidade média do fluxo é modelada pela função Fluxo/Densidade para cada *link* da rede, mantendo seu valor em todo o *link*. Neste caso, não são levadas em consideração as velocidades individuais de cada tipo de veículo que constituem o fluxo no arco (MAIA, 2007).

Entre as plataformas de simulação mais utilizadas no estudo desses modelos, se encontram: TRANSCAD, TRANSPLAN e TRIPS, TRANSYT-7F, VISUM, FREFLO, NETVACI, KRONOS, AUTOS, EMME/2, EMME/3, METANET e METACOR (Jimenez, 2011; Maia, 2007).

4.1.2 TEORIA MESOSCÓPICA

Os modelos baseados na simulação mesoscópica procuram estudar uma classe intermediária entre o realismo e o detalhamento, segundo Maia (2007). Nesses modelos, os veículos se representam como pelotões de tráfego, sendo tratados dessa forma. Quanto à localização, aceleração, velocidade e tamanho, tentam representar seu comportamento ao longo do espaço e do tempo.

Também se pode perceber uma aproximação intermediária entre os modelos macroscópicos e microscópicos pela busca da representação da realidade em um nível detalhado de redes relativamente extensas. Assim realizando menor esforço e utilizando menores recursos computacionais que nas análises microscópicas, levando em consideração o comportamento dos veículos individuais e de pequenas mudanças no fluxo e baseando-se em relações macroscópicas.

Esse modelo, ainda de caráter estático, estuda os valores de velocidade média e o comportamento dos motoristas no longo do tempo e espaço, utilizando modelos de distribuição probabilística da velocidade em posições e instantes específicos (JIMENEZ, 2011).

As plataformas de simulação que utilizam modelos mesoscópicos são, entre outras, METROPOLIS, DYNASMART, DYNAMIT e INTEGRATION, TRANSYT, SCOOT, TRANSCAD e SATURN, TRANSMODELER (JIMENEZ, 2011; MAIA, 2007).

4.1.3 TEORIA MICROSCÓPICA

Os modelos microscópicos se preocupam pela dinâmica individualizada e detalhada dos veículos e suas relações em qualquer instante de tempo ou intervalo desejado, desde a origem da viagem até a saída da rede, garantindo as análises grupais e individuais dos veículos que passam por determinado ponto.

"O trânsito dos veículos ao longo dos arcos da rede é regido por leis de perseguição e mudanças de faixa, que consiste na avaliação em tempo real dos tempos de viagem nos arcos, com as rotas dos veículos sendo desviadas dos caminhos mais congestionados" (MAIA, 2007).

Geralmente esses modelos são baseados no comportamento dos motoristas, ante a posição do veículo que vai à frente dele, além de restrições e custos implantados no longo dos corredores.

A extensão e a área de influência da microssimulação são menores, comparadas com os casos de macro e mesossimulação, fornecendo análises mais detalhadas. Os níveis de detalhe desses modelos permitem a precisão na estimativa das características associadas ao tráfego, como atrasos, comprimentos de fila, mudanças de faixas, tempo das viagens por veículo, velocidades pontuais, distâncias percorridas por veículos, entre outros. No entanto, seu processo de calibração e validação mostra-se mais complexo e demorado que nos outros modelos.

Entre as plataformas de microssimulação mais relevantes estão: INTEGRATION, PARAMICS, NETSIM, DRACULA, INTRAS, FRESIM, MITSIM, NETSIM, CORSIM, VISSIM, THOREAU, FLEXSYT-II e AIMSUM, VISSIM (JIMENEZ, 2011).

Os modelos microscópicos consideram vários valores e características para cada elemento. A seguir apresenta-se uma descrição dos principais modelos dos algoritmos microscópicos que foram estudados.

i. Algoritmo de Seguimento Veicular (Car-following).

Nos anos 50 foi desenvolvido o modelo de seguimento veicular que se baseia na relação lineal entre reação e estímulo (reação = estímulo x sensibilidade) (JIMENEZ, 2011). É uma relação psicológica que o motorista tem ante um estímulo, ele responde logo depois em um tempo de reação entre 0.5 - 2.0 segundos. Um estímulo pode ser, por exemplo, uma mudança na velocidade da distância com respeito ao veículo da frente. Uma reação é uma variação na taxa de desaceleração ou aceleração do veículo (ALARCÓN, 2010).

O motorista vai reconhecer as mudanças no tamanho aparente do veículo da frente quando ele está próximo ao veículo de menor velocidade. Diferenças de velocidade são percebidas através de mudanças no ângulo visual (FELLENDORF & VORTISCH, 2010).

Um dos mais conhecidos estudiosos desse algoritmo foi o alemão Wiedemann (1974). Ele desenvolveu dois algoritmos, os quais foram adotados como os modelos principais do simulador VISSIM. O primeiro foi Wiedemann 74, utilizado para a simulação do tráfego urbano, no qual as velocidades são baixas, o *headway* menor e o tempo de reação mais curto, além de que a geração de filas é frequente. O segundo teorema foi chamado de Widemann 91 e atualizado posteriormente ao Widemman 99. Foi desenvolvido principalmente para o tráfego sobre rodovias onde a velocidade da corrente veicular é maior. Constitui-se como a principal variável para as análises de capacidade e nível de serviço. Esse algoritmo é mais complexo que o anterior, apresentando maiores parâmetros de calibração. Como características principais, ele considera maior flexibilidade na aceleração ou desaceleração como resposta ao comportamento de um veículo líder. Também é possível alterar o tempo de reação dos veículos quando existe a presença de um veículo mais lento na liderança.

Estes algoritmos ou modelos de simulação microscópica combinam o desempenho dos veículos com o comportamento dos motoristas, principalmente apresentando características psicofísicas em cada um de seus movimentos longitudinais (OLIVEIRA & CYBIS, 2008).

O modelo de comportamento de Wiedemann é um modelo psicofísico não determinista de seguimento do veículo baseado em regras para o movimento lateral. Esse modelo de comportamento desenvolve quatro tipos de resposta em função da velocidade relativa com que o motorista percebe a distância do veículo precedente. Sendo estes: condução em fluxo libre, aproximação, seguimento e freado (GASULLA, 2011).

ii. Algoritmo de comportamento na mudança de faixa.

Os modelos de mudança de faixa baseiam-se nas decisões do motorista em cada instante de tempo quando ele se questiona se é conveniente seguir na mesma faixa ou trocar por outra, considerando a melhoria de sua velocidade, evitar obstáculos ou localizar-se corretamente para fazer giro ao final do trajeto (Moreno & Ortiz, 2001). Essa mudança pode ser casual ou necessária. A mudança casual é quando o motorista decide trocar de uma faixa lenta a uma mais rápida e a necessária acontece quando são encontrados incidentes sobre a faixa que obrigam ao condutor a sair dela (CHATTERJEE, 2008).

4.1.4 SÍNTESE COMPARATIVA DOS MODELOS APRESENTADOS

A utilização de cada um dos modelos mencionados é limitada por vários fatores como: nível de detalhamento dos dados, extensão do projeto, objetivo do projeto, entre outros. Na Tabela 4-1 se apresenta um resumo desses três modelos, fazendo uma comparação de seus elementos e suas características, assim como suas vantagens e limitações.

Tabela 4-1 Resumo comparativo Modelos de estudo do trafego veicular

	MODELOS MICROSCÓPICO	MODELOS MESOSCÓPICOS	MODELOS MACROSCÓPICOS	
Cobertura geográfica Subárea pequena rede		Rede regional à área metropolitana	Rede regional à área metropolitana	
Demanda	Matriz O/D dinâmica; fluxos veiculares nas interseções; fluxos de pedestres.	Matriz O/D função do tempo	Matriz O/D estática	
Controle do trafego	Sinalização semafórica detalhada; dispor de planos de funcionamento; interseções.	ução semafórica detalhada; Sinalização aproximada, mas é de planos de funcionamento; necessário dispor de planos de		
Análises Modelos	Comportamento do modelo baseado em algoritmos de seguimento de veículo e mudança de faixa por veículos individuais detalhado.	Comportamento do modelo baseado em algoritmos de seguimento de veículo e mudança de faixa por veículos individuais muito simplificado.	Situação de equilíbrio baseada em	
Vantagens	Pode analisar estratégias operacionais como a coordenação da sinalização do tráfego. Pode analisar cada veículo da rede	Pode analisar, de forma dinâmica, redes regionais.	-Rápido e simples no nível computacional; -Permite analisar grandes áreas geográficas.	
Limitações	Limitação no alcance geográfico que pode abarcar devido à complexidade computacional e sua calibração.	Tecnologia recente no mundo da simulação do tráfego.	-Não é sensível às estratégias operacionais nem está capacitado para analisar o desvio da dinâmica em um nível regional; -Obtenção de resultados pouco fiáveis.	

Fonte: adaptado de Gasulla (2011) e Maia (2007)

As diferenças entre cada modelo estão amplamente marcadas pelo nível de detalhamento da área estudada e das análises realizadas, enquadrando-se em diferentes níveis do planejamento dos transportes. O modelo macroscópico é visto como uma alternativa de análise no planejamento estratégico do transporte nas cidades para longos períodos de tempo, onde se procuram desenvolver programas sob os quais os sistemas integrados de transporte possam ser inteiramente desenvolvidos. Os modelos mesoscópicos atuam em um nível tático em análises de médio a longos prazos. Os microscópicos atuam num nível operacional, principalmente em análises de sensibilidade para projetos de curto prazo.

Levando em consideração que o foco da pesquisa centra-se no estudo do comportamento dos sistemas de faixas exclusivas para ônibus e sua interação com o fluxo veicular dos diferentes tipos de veículo em um nível operacional, com altos níveis de detalhamento em condições de operação normal, é apropriado utilizar os modelos de microssimulação que serão estudados a seguir.

4.2 METODOLOGIA NO PROCESSO DE SIMULAÇÃO MICROSCÓPICA

O processo metodológico da elaboração de um modelo de microssimulação é consenso geral na literatura, no entanto, para este trabalho serão consideradas como estrutura básica as metodologias apresentadas por Lieberman & Rathi (1975) e Araújo (2003), as quais abrangem todo o processo de forma compreensível e pertinente aos objetivos da pesquisa.

Os autores consideram que, como parte inicial do processo de microssimulação, deve-se compreender a extensão do problema a ser tratado com a finalidade de definir os objetivos, as limitações, o modelo a escolher e os elementos de análise, ou cenários a simular. Neste sentido, são apresentadas a seguir as etapas do processo, levando-se em consideração que, devido à calibração e avaliação, algumas devem ser revalidadas no processo: (i) concepção do problema e dos objetivos da simulação; (ii) levantamento e codificação de dados; (iii) calibração do modelo e validação do modelo; (iv) modelagem dos cenários avaliados e (v) análise de resultados.

4.2.1 CONCEPÇÃO DO PROBLEMA E DOS OBJETIVOS DA SIMULAÇÃO

Nesta etapa, são definidos os objetivos e as hipóteses básicas do processo de simulação, que envolve um conhecimento teórico e físico do ambiente modelado, considerando o propósito da modelagem e os elementos de análise.

Especificamente devem ser descritos e apresentados nesta etapa a delimitação da área de influência da microssimulação, a definição do período de análise e a seleção das vias representadas. Além disso, deve-se declarar qual é o propósito para o qual o modelo está sendo desenvolvido, as informações que o modelo deve fornecer e os diferentes cenários que se pretendem estudar.

4.2.2 LEVANTAMENTO E CODIFICAÇÃO DE DADOS

Esta etapa da metodologia consiste na coleta de todos os dados necessários para simular calibrar e validar a rede do caso estudado. Muitas fontes de informação podem ser utilizadas dependendo das características da área a ser simulada. "As fontes de informações envolvem observações em campo, levantamento de projetos, mapas e a programação operacional implementada pelos órgãos responsáveis" (JUNIOR & ARAUJO, 2010).

A quantidade e a qualidade dos dados estão ligadas à natureza e às características próprias de cada modelo e seu nível de detalhamento, em outras palavras, quanto mais detalhado e especifico for o modelo, maior pode ser a quantidade de dados requerida, no entanto, a qualidade e a relevância dos resultados também serão maiores.

A coleta dos dados para o processo de simulação geralmente se divide em dois grupos: dados da rede viária ou dados estáticos e dados dinâmicos, representando a demanda na rede estudada. O primeiro visa a caracterizar a geometria e a operação da rede; o segundo visa a caracterizar e quantificar o comportamento, a distribuição e a alocação das unidades de transporte, presentes no modelo (ônibus, carros, motos, caminhões, bicicletas, pedestres, entre outros), assim como as características das viagens da população.

Alguns dos dados estáticos requeridos para a simulação microscópica são: localização, número das faixas, faixas exclusivas, largura das faixas, comprimento, pontos de parada, sentido da rede, velocidade limite, programação semafórica, relações de prioridade, direção de movimentos nas interseções e sinalização geral existente (LIND *et al.*, 1999).

Além da coleta de dados feita em campo, essa informação também pode ser obtida a partir de planos da rede, de outros modelos, mapas digitais, fotografias aéreas, imagens de satélite, assim como dos órgãos governamentais administradores da rede.

Por outro lado, os dados da demanda viária geralmente são representados por matrizes de viagens de origem e destino (O/D) da zona de estudo, contagens de volumes veiculares, taxas percentuais entre conversões e a relação percentual dos diferentes tipos de veículos no tráfego (composição de tráfego), entre outros.

Para a obtenção desses dados de demanda usualmente os órgãos administradores da rede contam com informação detalhada. Em outros casos, é necessário realizar coleta de dados em campo ou um complemento dessas duas.

"Modelos de microssimulação de tráfego exigem informações complementares descrevendo as características operacionais dos veículos e/ou o estilo de dirigir dos motoristas" (JUNIOR & ARAUJO, 2010). Devido à diferença de estilos de condução nos diferentes países e cidades, a simulação pode não representar a realidade, no caso em que não forem levados em consideração esses parâmetros locais.

Como exemplo desses parâmetros, estão: *headway*, velocidade de operação, agressividade de condução, distâncias mínimas laterais entre diferentes tipos de veículos, entre outros. Esses parâmetros são propriamente estudados no processo de calibração na seção seguinte desta dissertação.

Na Tabela 4-2 se apresentam em resumo os dados usualmente requeridos na realização de estudos de microssimulação:

Tabela 4-2 Resumo de dados necessários para a elaboração de modelo de microssimulação

Categoria	Parâmetro	Comentário
	Plano de fundo	Podem-se utilizar imagens, mapas, cartografia existente e fotos de satélites.
	Longitude e direção do arco	Verificar a longitude, estado da via, largura de cada faixa e
	Número de faixas	número de faixas exclusivas.
Informação para construção e	Pontos de parada	Localização e distribuição de pontos de parada; identificação das linhas que param por ponto.
codificação da rede	Linhas de transporte público	Localização do trajeto das linhas do transporte público existente.
Dados estáticos	Operação na Intersecção	Verificar a configuração das faixas e dos movimentos proibidos.
esidiicos	Sinalização semafórica	Verificar o ciclo de fases no semáforo. Para sinais atuadas, verificar valores máximos e mínimos de verdes, localização dos detectores e configurações.
	Velocidade livre em cada arco da rede	Medida interrompida de tempos de viagem; utiliza velocidade espacial.
Informação de	Matriz OD	Obter de modelos externos.

Categoria	Parâmetro	Comentário
demanda	Fluxos veiculares por link da rede e percentuais de saída e entrada nos giros	Verificar o fluxo por movimento e a composição veicular.
	Transporte Público	Identificar a frequência de cada linha de ônibus. De acordo com o caso, pode-se identificar uma taxa de passageiros que sobe e desce nos ônibus, em cada ponto de parada, ou o tempo gasto nesse processo.

Fonte: Adaptado de Alarcón (2010)

4.2.3 CALIBRAÇÃO E VALIDAÇÃO DO MODELO

A confiabilidade dos modelos de simulação microscópica está ligada à capacidade de representar a realidade dentro de uma margem de erro aceitável. Embora esses modelos sejam alimentados com dados apropriados, geralmente existem conflitos entre as observações obtidas do modelo e do sistema real, afetando sua confiabilidade (MOREIRA, 2005).

Neste contexto, se faz necessário realizar o processo de calibração e validação para ajustar esses modelos e ficar próximo às condições do "mundo real". De modo geral, esses ajustes são realizados em duas etapas distintas denominadas: i) calibração de parâmetros e ii) validação do modelo

i. Calibração dos parâmetros da simulação

A calibração é o processo pelo qual os parâmetros do modelo de simulação são determinados e reajustados para que ele replique as medidas de campo e as condições de tráfego observadas (SANTOS, 2013). Neste processo, são estudados os parâmetros necessários para definir os diferentes algoritmos dos modelos utilizados nas análises microscópicas, tais como *carfollowing*, mudança de faixa, entre outros. Esses parâmetros são elementos próprios de cada simulador e possuem um valor padrão que comumente representa as condições médias de operação dos veículos ou pedestres.

Em consenso geral, na literatura, fica estabelecido que, para lograr entrar no processo de calibração do modelo, primeiro devem ser inicialmente executadas tarefas básicas como a construção e a codificação da rede, a coleta de dados do fluxo veicular por tipo de movimento em cada interseção, o tipo de veículo incorporado no modelo e a estrutura da demanda atual do setor, assim como uma análise representativa dos indicadores que querem ser obtidos.

Ayala, (2013) organiza e condensa esse processo em três passos (Figura 4-2). No primeiro, recomendam-se a definição das medidas de desempenho e o objetivo do projeto, a definição e

a coleta dos dados requeridos e uma análise de limitações do simulador. No segundo deve-se desenhar e codificar a rede a ser simulada, levando em consideração a geometria da via, o controle do tráfego e o fluxo e a composição de tráfego na rede, assim como os valores iniciais dos parâmetros a calibrar. Neste ponto, será realizada a primeira simulação. No terceiro passo são comparados os resultados obtidos na simulação com os valores da realidade. Caso não seja satisfatória essa comparação, os parâmetros devem ser ajustados e deve-se voltar para o segundo passo, até que a comparação seja considerada aceitável.

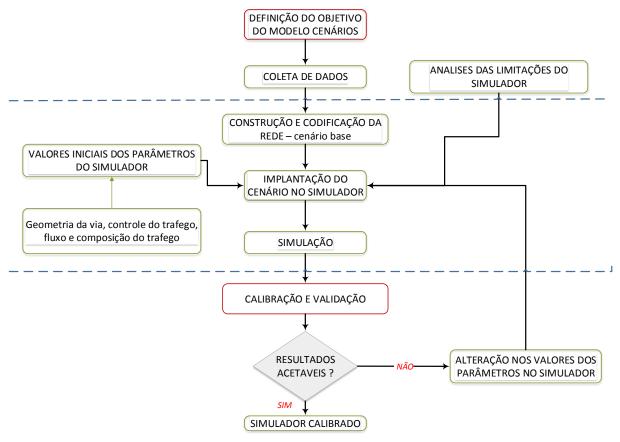


Figura 4-2 Processo de calibração Fonte: Ayala (2013)

Ayala (2003) também identificou em seu trabalho dois padrões nas técnicas de análise e calibração dos parâmetros. A primeira se baseia na revisão da literatura de trabalhos similares para a adoção de parâmetros importantes já calibrados. O segundo refere-se à utilização de procedimentos estatísticos e matemáticos, como análises de sensibilidade e algoritmos genéticos, entre outras.

O estudo desses parâmetros é amplo e depende principalmente do algoritmo e do modelo escolhido para a simulação, assim como a plataforma ou *software* simulador. Neste caso serão estudados os parâmetros do *software* VISSIM, o qual realizará as análises desta pesquisa.

Jimenez (2011) classificou em seu trabalho quatro parâmetros relevantes para serem calibrados para os modelos no VISSIM para vias urbanas. O primeiro é o número de veículos observados na frente do motorista, sendo adotado como valor recomendado 2 veículos na frente, no lugar de 4, que tem o *software* como *default*.

O segundo se refere ao parâmetro da mudança de faixa que considera a mudança necessária para entrar numa faixa estabelecida com a finalidade de seguir a rota designada. Neste caso se estabelece uma desaceleração máxima aceitável de $-4s/s^2$ no parâmetro de comportamento para o veículo que se encontra na faixa e deseja mudar; Para o veículo que fica atrás na nova faixa $(-3s/s^2)$, no entanto, é aceita uma desaceleração de 1m/s para ambos os casos, dependendo do caso estudado.

Em terceiro lugar, a autora ressalta o parâmetro de comportamento lateral que se define como a distância mínima lateral de segurança entre tipos de veículo. Nas condições predeterminadas do simulador, as bicicletas e as motos ocupariam um lugar completo na faixa, não podendo ultrapassar nem ser ultrapassadas por outros veículos, situação que não ocorre na realidade, pois esses tipos de veículos se misturam com o tráfego comum e ocupam um espação menor, trafegando junto aos veículos de porte maior, um ao lado do outro na mesma faixa. Esse valor deve ser ajustado até conseguir uma representação adequada da realidade.

E, por fim, o quarto parâmetro identificado é o controle por semáforo que se define considerando dois aspetos: o comportamento do motorista quando o semáforo está em amarelo e a redução da distância de segurança pela linha de parada.

Não se tem um procedimento único que abranja todo o processo de calibração e validação de qualquer modelo. Isso vai depender dos modelos escolhidos e da localização do setor a simular.

ii. Validação

Este processo se realiza depois da calibração dos parâmetros do modelo simulado, voltando-se para o passo final. Nessa fase do modelo, verifica-se a diferença obtida entre as medidas de desempenho estimadas, incluindo a calibração dos parâmetros com aquelas coletadas em campo.

A inspeção visual é uma parte importante dessa fase, na qual é possível a identificação de inconsistências que podem ocorrer, como veículos passando sobre outros veículos, impossibilidade de sobrepasso, regras de prioridade em interseções, filas não previstas, entre outras. Se um modelo atende a todos os requisitos estabelecidos na fase de avaliação, o modelo está pronto para ser analisado junto com seus cenários futuros, ficando o processo de calibração completo. Se as metas não forem cumpridas, o processo de calibração da rede operacional é revisado novamente, a fim de fazer mais modificações no modelo de simulação. Se ainda assim as metas da validação não forem cumpridas, os dados da verificação devem ser avaliados para determinar os melhores parâmetros e assim modificá-los durante a próxima iteração da calibração (WOODY, 2006).

Encontram-se na literatura várias metodologias de calibração, geralmente se tratam de análises comparativas entre dados simulados e coletados em campo de diferentes índices de desempenho, levando em consideração alguns critérios de aceitação.

Moreira (2005) compara valores de fluxo efetivo na rede, tempo médio de percurso, velocidade média de percurso e comprimento de filas, do cenário atual simulado com dados coletados em campo, considerando o critério de aceitação de Choa, Milam, Stanek (2000), o qual se ilustra na Tabela 4-3.

Tabela 4-3 Critérios de validação de modelos de microssimulação.

Critérios para Validação (2000) - Diferenças entre observado e simulado					
Parâmetros Critério					
Fluxo efetivo na rede	Diferença de 5%				
Comprimento de filas máximas e médias Diferença de 20%					

Fonte: Moreira (2005)

Outros autores, no entanto, melhoram esse processo, utilizando elementos estatísticos ou fórmulas empíricas para garantir que o modelo apresente alto grau de fidelidade com as observações em campo. Como é o caso do teste GEH, desenvolvido por Geoffrey E. Havers

(quem propôs em 1970 enquanto trabalhava como planejador de transporte em London). Esse teste é utilizado em vários trabalhos revisados para a comparação de duas amostras de volume de tráfego (ALARCÓN, 2010; DOWLING *et al.*, 2004; JIMENEZ, 2011; OKETCH & CARRICK, 2005). O teste GEH tem como objetivo evitar os possíveis erros na avaliação do modelo quando são utilizadas técnicas simples de comparação como a diferença percentual. A Equação 3 apresenta a formulação do teste GEH.

$$GEH = \sqrt{\frac{(M-O)^2}{0.5*(M+O)}}$$
 (2)

Onde:

- M = fluxo veicular horário da simulação [veíc/h];
- O = fluxo veicular horário observado [veíc/h].

Os valores GEH podem dar uma indicação do nível de ajuste do modelo, conforme descrito abaixo:

GEH < 5 Pode ser considerado um bom ajuste dos dados

5 < GEH < 10 Deve-se revisar o modelo

GEH >10 Não é considerado aceitável

Por outro lado, a FWHA (2004)⁹ em sua guia de análises de tráfego descreve e centraliza algumas metodologias, além do teste GEH, para a validação e aceitação do modelo. Esses critérios e seus valores historicamente aceitos são resumidos na Tabela 4-4 a seguir:

Tabela 4-4 Critérios de validação e calibração do modelo

Critério e medições (valores simulados V.S. observados)	Aceitação da calibração	Comentários e fontes	
-luxos de Arcos Individuais			
Dentro de 100 veíc/h para fluxos < 700 veíc/h	> 85% de casos		
Dentro de 15% para 700 <fluxos 2700="" <="" h<="" td="" veíc=""><td>> 85% de casos</td><td>FHWA (2004)</td></fluxos>	> 85% de casos	FHWA (2004)	
Dentro de 400 veic/h para fluxos < 2700 veíc/h	> 85% de casos		
oma de todos os fluxos por arco	Precisão = 5%		

⁹ Relatório guia de análises do tráfego, Volume III (DOWLING et al., 2004) - FHWA.

Critério e medições (valores simulados V.S. observados)	Aceitação da calibração	Comentários e fontes	
Estatístico GEH < 5 para fluxos por arco individual	Precisão = 5%		
Estatístico GEH para suma sobre os fluxos do arco	< 4		
Tempos de viagens para linhas selecionadas	Dentro dos 10%		
Tempo de viagem relativo ao observado		RTA NSW	
Dentro dos 15% dos tempos observados (ou 1 minuto, se é maior)	> 85% dos casos		
Padrão de congestionamento		Distribuição de faixas de tráfego	
Inspecionar a dispersão de filas, a distribuição da demanda por faixas etc.	Satisfação do modelador	tem um relevante impacto nos atrasos da rede	
Estabilidade do Modelo			
Variação entre o fluxo mínimo e máximo que ingressam na rede	Dentro dos 5%	Cinco simulações utilizando	
Tabulação de fluxos máximos e mínimos por arco e cordão de acordo as variações do 20% (ou 200 vei/h), 10% (ou 100 vei/h) e 5% (ou 50 vei/h)	Satisfação do modelador	diferentes sementes	

Fonte: Dowling et al. (2004)

Outra técnica de validação foi utilizada por Souza (2014) e refere-se à comparação das velocidades médias que são obtidas pela simulação mediante várias replicações com relação às velocidades observadas em campo, utilizando o teste de significância estatística ANOVA – Fator único, com o objetivo de verificar se os valores de ambas as amostras podem ser declarados como iguais. Esse teste fundamenta sua análise com a utilização da distribuição de Fischer que estuda a relação das variações entre o número de grupos de amostras e a variação dentro dos valores das amostras dos grupos.

Para esse teste, consideram-se duas hipóteses: Ho (as duas amostras são iguais) e Ha (pelo menos uma das amostras é diferente). Contudo, pretende-se verificar primeiro que o p-valor deve ser maior do que o nível de significância (quanto mais alto for, indica a maior probabilidade de se aceitar a hipótese nula). Em segundo, que no teste F (Fischer), o F crítico deve ser superior ao F das amostras. Se as duas condições foram atendidas, a hipótese nula (Ho) não é rejeitada no nível de significância adotado.

São várias as metodologias utilizadas para a validação do modelo de microssimulação. A seleção da metodologia apropriada para validar cada modelo dependerá especificamente do problema de microssimulação estudado, da qualidade dos dados coletados e do critério do modelador.

4.2.4 ANÁLISES DE SENSIBILIDADE E TRATAMENTO DOS DADOS

As análises de sensibilidade são realizadas com a finalidade de fornecer um melhor entendimento sobre o resultado da pesquisa. Esse processo pressupõe a alteração do cenáriobase, mudando-se os valores dos parâmetros; modificando-se a geometria da rede e mudando-se o controle de tráfego, como por exemplo, alterando-se os tempos semafóricos (LIND *et al.*, 1999).

4.2.5 SIMULAÇÃO DOS CENÁRIOS DE MICROSIMULAÇÃO

A rede calibrada e validada é aplicada nesta etapa para calcular os indicadores de desempenho para cada alternativa ou cenário escolhido. No entanto, deve-se levar em conta algumas considerações na hora de realizar esse processo.

Os modelos de microssimulação dependem de números aleatórios chamados sementes para gerar veículos, selecionar seu destino e trajeto e também para definir seu comportamento na rede. Devido ao comportamento estocástico da microssimulação, quando a semente varia, também variam os resultados da simulação até em 25%. Razão pela qual é recomendável rodar a simulação várias vezes com diferentes sementes, a fim de encontrar valores médios, mínimos e máximos e calcular assim valores mais realistas. Na literatura se consideram de 5 a 10 rodadas como suficientes para essas análises (JIMENEZ, 2011). No entanto, isso dependerá do equilíbrio da tendência dos dados nessas rodadas.

Além dessas rodadas, deve-se validar se a média dos dados encontrados em cada replicação é estatisticamente aceitada em um intervalo de confiança adotado. Se não for assim, deve-se calcular o número de rodadas necessárias para atingir esse objetivo.

Em consenso na literatura (AYALA, 2013; DOWLING *et al.*, 2004; JIMENEZ, 2011; MOREIRA, 2005), um período de aquecimento é necessário em cada rodada da simulação antes do sistema atingir o equilibro. Esse período de simulação deve ser excluído das estatísticas tabuladas. Dowling *et al.* (2004) e Jimenez (2011) concordam que o tempo necessário de inicialização do aquecimento deve ser de 15 minutos.

4.2.6 ANALISES RESULTADOS E INDICADORES DE DESEMPENHO NA SIMULAÇÃO

Geralmente os simuladores oferecem uma grande flexibilidade na definição dos diferentes indicadores de desempenho, pois permitem apresentar características relativas do desempenho

global da rede. O usuário também pode solicitar análises de cada evento ocorrido e para cada veículo ao longo da simulação. Em geral, os simuladores em sua maioria fornecem uma ampla gama de indicadores de desempenho, que servem para analisar as diferentes características da rede e do fluxo veicular. Dowling (2007) apresenta em seu trabalho oito indicadores básicos que são considerados em grande parte dos simuladores do mercado e são a base para a construção de medidas de desempenho geralmente utilizadas por órgãos públicos para monitorar o desempenho do trafego (Tabela 4-5).

Tabela 4-5 Indicadores de desempenho recomendados como resultado do processo de simulação.

Indicadores de desempenho derivados Nível de serviço Volume/capacidade Tempo de viagem Velocidades Atrasos Filas Numero de Paradas Densidade Fonte: Dowling (2007)

Segue a definição de alguns dos indicadores desempenho mencionados:

i. O nível de serviço

O nível de serviço é uma medida puramente qualitativa das condições de circulação, que leva em consideração os efeitos da velocidade, o tempo de trajeto, a segurança, o conforto, a condução e os custos de funcionamento.

O HCM define a capacidade como a "taxa horária máxima de pessoas ou veículos que pode ser razoavelmente esperada para atravessar um ponto ou segmento uniforme de uma faixa ou via durante um determinado período de tempo sob condições prevalecentes referentes ao tráfego, à via e ao controle".

A capacidade máxima geralmente se expressa em veículos/hora e depende das características técnicas da via e do tráfego, tais como composição veicular, velocidade de circulação, estado do pavimento, condições climáticas, pendentes, geometria e seção da via.

Assim, na definição do nível de serviço se tem seis graus de medição que vão desde o A até o E, onde a avaliação integral dos parâmetros de velocidade média, fluxos veiculares e

características técnicas da infraestrutura (tipo de terreno) no trecho viário estudado definem o nível de serviço operacional e o uso da infraestrutura.

A simulação no *software* VISSIM utiliza a metodologia do HCM, baseada no controle dos atrasos em intervalos estimados de 15 minutos. A Tabela 4-6 apresenta o nível de serviço, levando em consideração o atraso médio por veículo em segundos.

Tabela 4-6 Nível de serviço

Nível de serviço	Atraso médio (s)
Α	≤ 10
В	> 10 - 20
C	> 20 - 35
D	> 35 - 55
Е	> 55 - 80

Fonte: PTV AG (2012)

ii. Relação V/C (Volume/Capacidade)

A capacidade se define como a taxa máxima de fluxo que a pista pode suportar por um ponto ou trecho uniforme da via nos dois sentidos, geralmente na hora de máxima demanda. A relação volume/capacidade mede o fator de utilização da capacidade da via, considerando que:

- V/C menores a 1,0 indicam capacidade remanescente;
- V/C maiores a 1,0 indicam níveis de saturação.

iii. Tempo de viagem e velocidades

O tempo de viagem é um indicador de desempenho medido em segundos que representa o tempo necessário que precisa um veículo para se deslocar entre dos pontos da rede Origem-Destino, incluindo a espera e os tempos de parada (PTV AG, 2012).

iv. Atraso

Esta medida se expressa em segundos e se calcula para cada veículo da rede depois de completar um trecho definido (Origem – Destino), subtraindo o tempo de viagem ideal ou teórico do tempo de viagem real. O tempo de viagem teórico é o tempo de viagem em condições de fluxo livre sem nenhum controle de sinal e sem interferência de outros veículos (o tempo real não inclui o tempo nos pontos de parada ou nos estacionamentos) (PTV AG, 2012).

v. Filas

O *Highway Capacity Manual* do Ano 2000 (HCM) define as filas como uma linha (Q) de pessoas, bicicletas e veículos na espera para serem atendidos pelo sistema. Veículos que estão em movimento lento e se juntam na parte traseira são considerados parte da fila. "A dinâmica de fila interna pode envolver partidas e paradas. Uma linha mais rápida em movimento de veículos é muitas vezes referida como uma fila em movimento ou um pelotão" (NATIONAL RESEARCH COUNCIL TRANSPORTATION RESEARCH BOARD, 2000).

vi. Densidade (d)

A equação geral do tráfego parte da densidade a qual pode ser definida como a quantidade de unidades veiculares por hora em determinada distância de área. Essa medida usualmente não é gerada diretamente pelos simuladores e tem que ser calculada a partir dos indicadores básicos mediante a seguinte relação fundamental:

Por outro lado, Zhu *et al.* (2012), em sua pesquisa realizada com o objetivo de analisar o comportamento de sistemas de faixas exclusivas em diferente cenário, utilizam uma combinação dos parâmetros de atrasos médios totais, quantidade de veículos da rede, distância, velocidade e tempos de viagem, com foco no transporte por ônibus.

vii. Velocidade na rede

Este indicador visa a apresentar a velocidade média de operação dos veículos sem levar em consideração a demora causada pelas paradas na rede. A velocidade total da rede é calculada considerando a média ponderada da velocidade de cada tipo de veículo.

4.3 ESCOLHA DO MODELO A UTILIZAR NA PESQUISA

A escolha do modelo depende das características da zona simulada, do detalhamento que seja requerido para cada caso, além dos resultados que se precisem obter. De outro lado também é necessário analisar as utilidades do *software* ou simulador a utilizar, o qual pode variar, dependendo da metodologia utilizada, o alcance e os resultados. Cabe ressaltar que não existe um simulador que possa satisfazer todas as necessidades analíticas de um projeto em

particular FHWA (2004). Por isso, é necessário estudar os modelos teóricos para decidir qual é possível utilizar em determinada situação.

Conforme mencionado anteriormente, esta pesquisa se centra no estudo dos sistemas de faixas exclusivas para ônibus e seu comportamento ante a presença ou não de outros tipos de veículos, com um amplo nível de detalhe, em um setor relativamente pequeno, se comparado com a rede de urbana total. O que indica uma análise puramente microscópica, para o qual é necessária a seleção do modelo ou algoritmo adequado junto com a plataforma na qual será desenvolvido o trabalho.

Para isso, se fizeram a seguintes questões recomendadas por Maia (2007): o modelo pode representar cenários alternativos? O modelo pode representar situações complexas de tráfego? O modelo é capaz de simular diferentes formas de controle de fluxo no final dos arcos da rede? Quais são os resultados do modelo? E, por fim, qual facilidade do uso do modelo?

Além dessas questões sugeridas e adotadas a partir da literatura, também foram feitas outras questões, especificamente pelo tipo de estudo que se pretende simular. São elas: É possível criar e simular diferentes tipos de veículo? É possível simular transporte público independente do fluxo veicular (faixas exclusivas)? É possível alterar o comportamento dos motoristas por cada tipo de veículo? É possível obter resultados por tipo de veículo?

Com base nesses critérios e na revisão bibliográfica sobre os modelos algoritmos disponíveis, foi selecionado o algoritmo *Car-following* representado no simulador VISSIM em sua versão 5.40-12, o qual reponde a cada questionamento de maneira satisfatória.

Embora existam outros aplicativos que seguem como princípio o mesmo algoritmo com funções similares, foi escolhido o VISSIM levando em consideração um critério adicional, a facilidade de aquisição do *software*, o qual foi possível adquirir de forma gratuita, em modalidade de licença completa para pesquisadores em universidades, disponibilizado pela PTV, companhia distribuidora do *Software*.

4.4 SIMULADOR VISSIM

O software *VISSIM – Verkehr In Stadten-Simmulation*, em sua versão 5.40-12, será utilizado para o desenvolvimento desta pesquisa. VISSIM é uma ferramenta de simulação microscópica e multimodal de tráfego, desenvolvida durante os anos 70. Essa ferramenta é comercializada pela companhia *PTV-Planing Transport Verkehr*, em Kalruhe, Alemania, desde 1993. O

software está capacitado para analisar operações dos veículos mistos e de transporte público sob algumas restrições, como configuração de faixa, composição de veículos, sinais de trânsito, pontos de parada, entre outras. Assim, tornou-se uma ferramenta útil para a avaliação de várias alternativas com fundamento na engenharia de transportes. Também os fluxos do transporte público podem ser modelados de forma exclusiva ou combinada com o tráfego privado.

Esse simulador baseia-se no algoritmo microscópico *Car-Following*, especificamente no modelo estudado por Widemann 74 (modelo utilizado para áreas urbanas) e Widemann 91. O modelo é utilizado considerando o comportamento do parâmetro PIED (Percepção, Intelecto, Avaliação e Determinação) para as condições Psicofísicas do motorista por cada tipo de veículo (carros, ônibus, caminhões, motos, bicicletas, entre outros)¹⁰.

VISSIM® simula a corrente veicular em movimento sobre uma rede, mediante a definição da unidade "driver-vehicle" (veiculo-motorista). Todos os motoristas e suas características comportamentais são atribuídas a uma categoria de veículo, pelo qual o comportamento de condução corresponde à capacidade técnica do veículo e pode ser modificado segundo os estilos de comportamento de cada caso de estudo.

Os parâmetros de "*driver-vehicle*" podem ser divididos em três categorias: i) características técnicas do veículo, ii) comportamento do motorista e iii) interdependência das unidades veículo-motorista (PTV AG, 2012).

- i. Características técnicas do veículo:
- Longitude;
- Velocidade Máxima;
- Potencial de aceleração;
- A posição real na rede;
- A velocidade real e a aceleração.
- ii. Comportamento do motorista
- Capacidade de tolerância à agressividade do motorista;

 $^{^{10}}$ anual vissim. PTV *traffic mobility logistics*. Ano 2007.

- Memória do motorista;
- Aceleração baseada na aceleração atual e na velocidade desejada.

viii. Interdependência das unidades veículo-motorista

- Relação de liderar ou seguir os demais veículos por sua conta, permitindo mudanças sobre as faixas de circulação adjacentes;
- Em referência aos sinais de tráfego próximos;
- Distancia à próxima interseção.

Internamente o simulador é constituído por dois subprogramas, sendo que o primeiro deles reconhece o modelo de fluxo do tráfego no qual se definem todas as características da rede que se pretende estudar. O segundo envia as ordens para que os veículos e pedestres se comportem de uma maneira ou outra em função do valor que tomam as variáveis no fluxo.

A representação de gráficos VISSIM faz parte fundamental no processo de validação, pois serve como ferramenta visual, permitindo verificar e comparar se o comportamento simulado concorda com o comportamento na realidade, além de visualizar a existência de filas nos pontos críticos na rede que não foram consideradas inicialmente. Outras características interessantes dessa plataforma é a capacidade de apresentar a simulação em um ambiente 3D de alta resolução, o que facilita enormemente a interpretação e a apresentação do que está acontecendo nas áreas estudadas de uma maneira visual, além dos indicadores gerados a partir de cada simulação.

4.5 CONSIDERAÇÕES FINAIS

O principal objetivo deste capítulo foi apresentar uma visão abrangente sobre a teoria que dá suporte aos modelos de simulação do transporte, especificamente a microssimulação, para fundamentar a metodologia que se deve adotar na realização das análises das alternativas apresentadas no decorrer desta dissertação de mestrado. Assim como, permitir o entendimento das diferentes medidas de desempenho ou efetividade que serão levadas em consideração para as análises mencionadas.

Também se estabeleceu a diferença entre os diferentes níveis dos modelos de simulação; macroscópicos, mesoscópicos e microscópicos, considerando o fator de detalhamento como um dos principais parâmetros na escolha do processo da modelagem adequada.

Ressalta-se neste capítulo a importância do processo de calibração e validação, o qual permite a optimização e o reajuste do modelo para representar fielmente as características de operação real do modelo a ser analisado.

Vale salientar também que é necessário executar o modelo várias vezes, variando a semente cada vez para obter resultados mais ajustados à realidade, além de estabelecer um período de aquecimento de 15 minutos, em geral, a fim de que, ao iniciar a simulação, esta se encontre carregada e em equilíbrio.

O capítulo a seguir apresenta o estudo de caso. Serão apresentada a metodologia do processo de microssimulação estudada neste capitulo, com foco nos diferentes cenários de transporte com os sistemas de faixas exclusivas para ônibus (BRS), objetivo desta pesquisa.

5 ESTUDO DE CASO

Neste capítulo, estuda-se o BRS sob dois pontos de vista. O primeiro pretende enquadrar e analisar a relação desse sistema com os diferentes meios e modos de transportes, levando em consideração a avaliação dos atributos operacionais apresentados na seção 2.6.1 e a classificação por tipo direito de passagem estudada na seção 2.2.1, por meio de entrevistas aplicadas a conhecedores do tema de transportes, tais como, especialistas, estudantes ou professores. E o segundo estuda o comportamento das diferentes alternativas dos sistemas de transportes exclusivos para ônibus focado no BRS com relação à corrente veicular. Para isso, são analisadas as diferentes alternativas propostas no Capítulo 3.6, empregando a simulação como ferramenta de análise, seguindo a metodologia e as recomendações do Capítulo 4, utilizando como modelo de simulação o algoritmo *Car-following* representado na plataforma VISSIM 5.40, como mencionado na Seção 4.3.

5.1 PRIMEIRA PARTE - CLASSIFICAÇÃO DO BRS SOB O PONTO DE VISTA DO ÍNDICE DE COMPLEXIDADE

Como foi mencionado, nesta seção tem-se como propósito encontrar a relação entre o BRS e os diferentes sistemas de transporte, tais como metrô, trem suburbano, monotrilho, BRT, VLT, entre outros. Para isso, considera-se o índice de complexidade e a capacidade de cada sistema de transporte, assim como a classificação por direito de passagem estudada por Vuchic (1981).

Neste sentido, foi elaborado um questionário que foi entregue no mês de novembro de 2013 para ser preenchido via e-mail por vários especialistas e estudantes da área do transporte (ver anexo B). O formulário pretendia coletar as opiniões dos especialistas na área de transporte, considerando seu conhecimento na operação dos sistemas de transporte citados, relacionando-os aos atributos selecionados e explicados na seção 2.6, utilizando como mecanismo de análise uma matriz multicritério de avaliação.

5.1.1 RESULTADO DA COLETA DOS DADOS

O formulário foi aplicado via e-mail e enviado para algumas pessoas previamente selecionadas. Deste processo, se obtiveram um total de 44 entrevistas, das quais 39% equivalem a mulheres e 61 % a homens, como se ilustra na Figura 5-1.

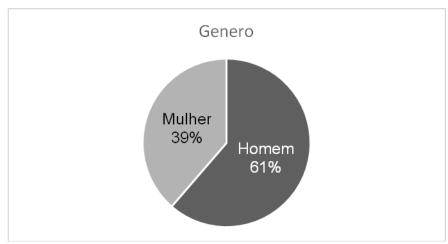


Figura 5-1 Distribuição de gênero da amostra

Também se identificou o grau de instrução dos entrevistados, os quais em sua maioria são estudantes de mestrado (61%) e doutorado (27%) na área de transportes (Figura 5-2).

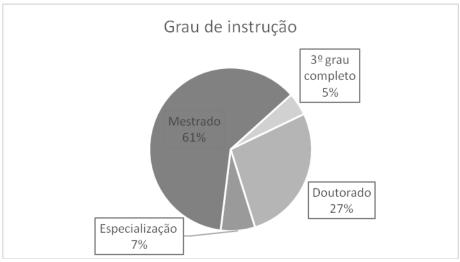


Figura 5-2 Grau de instrução

Como apresentado na metodologia, além das informações básicas dos entrevistados também se obtiveram as opiniões a respeito dos atributos estudados em relação a cada modo de transporte, os quais foram quantificados segundo as tabelas da Seção □, seguindo uma abordagem qualitativa. Posteriormente no processamento dessa informação, foi dado um valor quantitativo entre 0 e 10 unidades, segundo cada caso. Depois para cada modo de transporte e para cada atributo foi encontrada a média aritmética, a qual será o valor representativo de cada variável. Essas análises se apresentam com maior detalhe nas seções seguintes.

i. Confiabilidade

Neste atributo pode-se identificar que o ônibus convencional tem o menor grau de aceitação, o que se esperava devido à irregularidade em sua operação e à falta de instrumentos que ajudem a prever a frequência e os períodos de operação com eficiência. Os modos férreos se destacam nesse parâmetro, apresentando maiores valores porque é possível prever sua frequência. Além disso, nesse modo de transporte também se destacam os sistemas BRT (Figura 5-3).

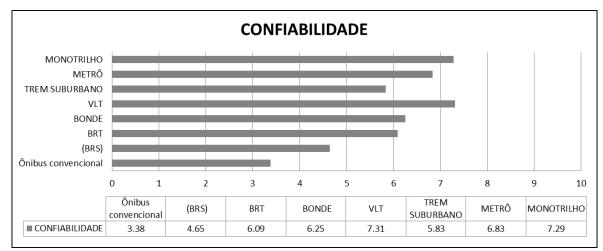


Figura 5-3 Atributo Confiabilidade

ii. Rapidez

Como explicado anteriormente, este atributo avalia a velocidade de operação das unidades de transporte de cada sistema. A partir das análises, observou-se que o Metrô e o Monotrilho lideram a lista com os maiores valores (6,83 e 7,29 respectivamente). Esse comportamento era esperado, pois esses modos de transporte não têm interferências de outros veículos em seu direito de passagem, caso que acontece com o ônibus, o qual se mistura com os veículos particulares, táxis, motos e outros tipos de veículos, disposto ao final dessa avaliação. No caso dos outros sistemas, seu grau de interferência é menor normalmente nas interseções e com algum tipo de veículos com restrições. A Figura 5-4 apresenta esses resultados.

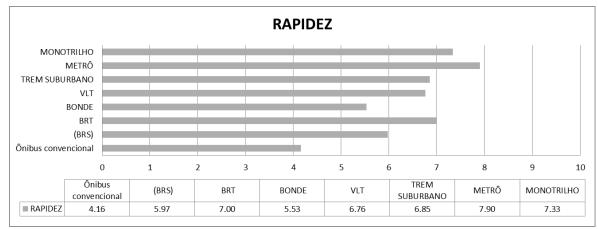


Figura 5-4 Atributo Rapidez

iii. Conforto

Na Figura 5-5 se ilustra o grau de conforto de cada sistema de transporte. Segundo a pesquisa realizada, o VLT e o Monotrilho são os modos mais confortáveis. Por outro lado, o ônibus convencional se apresenta como o sistema com menor conforto. Esse comportamento pode ser atribuído à lotação das unidades, assim como ao longo do comprimento das viagens desses sistemas e nessas condições.

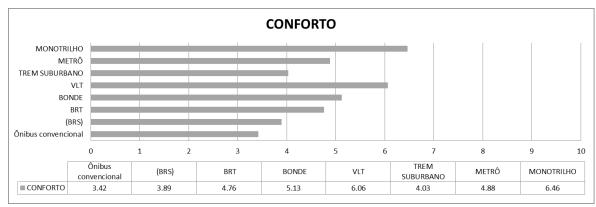


Figura 5-5 Atributo Conforto

iv. Acessibilidade

Na avaliação da acessibilidade, encontrou-se que o ônibus convencional, o BRT e o VLT lideram no desempenho desse atributo, pois por se tratar de um estudo de acessibilidade locacional, os pontos de embarque e desembarque são de fácil acesso geralmente em nível. No caso do ônibus, os pontos de parada estão mais próximos entre eles, evitando que os usuários se desloquem por longos trajetos desde a origem da viagem (Figura 5-6).

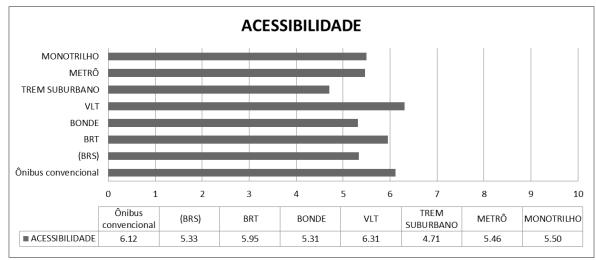


Figura 5-6 Atributo Acessibilidade

v. Segurança

O sistema de ônibus convencional e o bonde são os meios de transporte com maior índice de insegurança sob o ponto de vista do número de acidentes, o que pode se atribuir ao alto grau de mistura e interferência com os veículos particulares, ciclistas e pedestres, tornando-o mais vulnerável aos acidentes. O que não acontece com os sistemas ferroviários como o metrô, pois não tem interferências dos outros veículos em seu direito de passagem e a geração de acidentes por choques entre veículos é nula. Na Figura 5-7, se ilustram os resultados das análises.

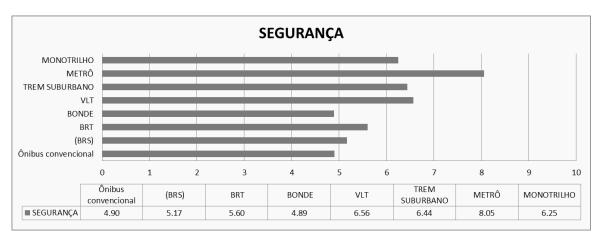


Figura 5-7 Atributo Segurança

vi. Nível de investimento

A Figura 5-8 apresenta a avaliação do nível de investimento de cada sistema de transporte, onde se observa que o metrô gera os maiores gastos de investimento devido às complexas infraestruturas que devem ser construídas para seu direito de passagem, assim como a utilização de veículos especializados. Do outro lado se encontra o sistema de ônibus convencional com a menor avaliação nessa categoria, pois esse utiliza a rede existente e tem baixa exigência em sua infraestrutura, a qual se limita geralmente à implantação de sinalização e pontos de parada.

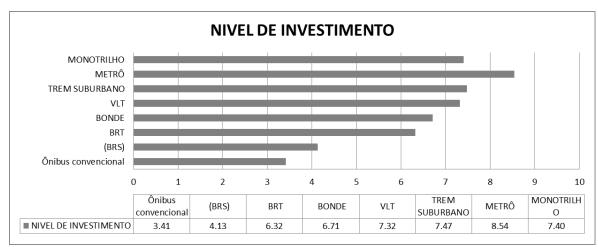


Figura 5-8 Atributo Nível de Investimento

vii. Peso dos atributos

Depois de se analisarem os dados coletados, estimou-se a média aritmética dos pesos de cada sistema. A Rapidez e a Confiabilidade foram os atributos com maior peso (2,02 e 1,90 respectivamente). Por outro lado, o nível de investimento foi o atributo com o menor valor (1.17) e assim teve uma menor importância na avaliação da complexidade (Tabela 5-1).

Tabela 5-1 Pesos dos atributos

ATRIBUTO	PESO	DESVIO PADRÃO	MAX	MIN			
CONFIABILIDADE	1.90	0.72	5.00	0.00			
RAPIDEZ	2.02	0.66	4.00	0.91			
CONFORTO	1.56	0.51	2.73	0.00			
ACESSIBILIDADE	1.69	0.57	3.00	0.10			
SEGURANÇA	1.67	0.56	3.00	0.50			
NÍVEL DE INVESTIMENTO	1.17	0.62	2.00	0.00			

Finalmente a Figura 5-9 apresenta os valores calculados de cada atributo e de cada sistema de transporte, onde se identifica o metrô como o sistema mais relevante da pesquisa, o que foi evidente na maioria dos atributos. Por outro lado, o ônibus fica por último na avaliação, exceto no atributo acessibilidade, no qual foi líder (6,12). No entanto, na próxima seção foram ajustados esses valores, com aplicação dos pesos de cada variável e cálculo da complexidade, com objetivo de apresentar valores melhor ajustados à realidade.

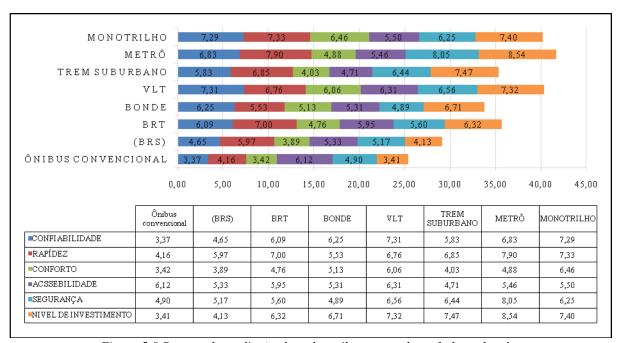


Figura 5-9 Resumo da avaliação de cada atributo segundo os dados coletados

5.1.2 AVALIAÇÃO DOS RESULTADOS

Com o produto da aplicação da equação (1) em todos os sistemas de transporte, calculou-se o índice de complexidade para cada um, demonstrado na Tabela 5-2. O metrô se apresenta como o sistema com maior nível de complexidade, seguido pelo Monotrilho e pelo VLT. O ônibus convencional se confirmou como o sistema de menor complexidade.

Tabela 5-2 Cálculo da COMPLEXIDADE de alguns sistemas de transporte							
SISTEMAS DE TRANSPORTE	Confiabilidade	Rapidez	Conforto	Acessibilidade	Segurança	Nível de investimento	COMPLEXIDADE
Peso	1,90	2,02	1,56	1,69	1,67	1,16	
ÔNIBUS CONVENCIONAL	3,37	4,16	3,42	6,12	4,90	3,41	42,62
BRT	6,09	7,00	4,76	5,95	5,60	6,32	59,88
BONDE	6,25	5,53	5,13	5,31	4,89	6,71	55,97
VLT	7,31	6,76	6,06	6,31	6,56	7,32	67,14
TREM SUBURBANO	5,83	6,85	4,03	4,71	6,44	7,47	58,60
METRÔ	6,83	7,90	4,88	5,46	8,05	8,54	69,17

A Tabela 5-3 ilustra uma compilação dos resultados obtidos nesta pesquisa, onde se pode observar o valor estimado da capacidade de cada modo de transporte e seu nível de complexidade. Além disso, também se relaciona o tipo de categoria de via ou direito de passagem em cada sistema.

MONOTRILHO

7,29 7,33 6,46 5,50 6,25 7,40 67,06

Tabela 5-3 Capacidade e Complexidade sistemas de Transporte

Tubeta 3-3 Capacitadae e Comptexidade sistemas de Transporte						
SISTEMA DE TRANSPORTE	CATEGORIA (Vuchic, 1981)	COMPLEXIDADE	CAPACIDADE (Pass/h/sentido)	Fonte: capacidade		
ÔNIBUS CONVENCIONAL	С	42,62	4800	(LERNER & NTU, 2009)		
BONDE	С	55,97	15000	(LERNER & NTU, 2009)		
BRT	В	59,88	32400	(LERNER & NTU, 2009)		
VLT	В	67,14	40000	(Oliveira, 2010)		
MONOTRILHO	Α	67,06	50000	(Oliveira, 2010)		
TREM SUBURBANO	А	58,60	50000	(FERRAZ & TORRES, 2004)		
METRO (4 - 10 CARROS)	Α	69,54	80000	(Oliveira, 2010)		

Ao se cruzar os valores do nível de complexidade com a capacidade de operação dos diferentes modos prioritários de transportes, pode-se ver a relação que essas duas variáveis apresentam. Quanto maior é a capacidade, maior é o índice de complexidade, no entanto, seu relacionamento não é de todo linear. Observou-se que o melhor ajuste da tendência dos dados está representado pela potencial, segundo a equação que segue:

 $Complexidade = 11,696 \cdot capacidade^{0,1576}$, com um R² = 0,8381 (Figura 5-10).

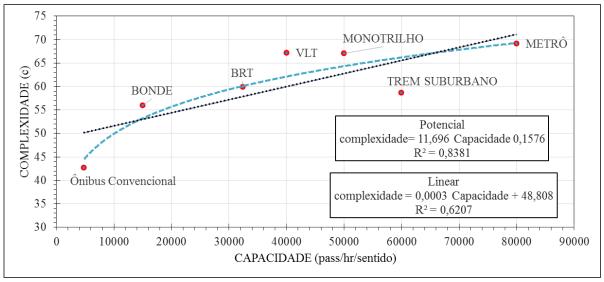


Figura 5-10 Gráfico de tendência da complexidade em função da Capacidade

Na Figura 25 pode-se observar que o ônibus particular se encontra no início da curva, apresentando o menor índice de complexidade e o metrô, no outro extremo apresentando o maior valor. Já o trem suburbano apresenta um valor de complexidade que fica fora da tendência crescente dos dados, pois esse sistema tem uma classificação baixa em vários dos parâmetros estudados, o que pode ocorrer porque grande parte das pessoas entrevistadas mora ou morou na Cidade de Rio Janeiro e relacionou essa avaliação com o sistema de trem da cidade, o qual apresenta grandes deficiências principalmente nos parâmetros de conforto, acessibilidade, segurança e confiabilidade.

5.1.3 NÍVEL DE COMPLEXIDADE DO BRS E SEU DIREITO DE PASSAGEM

Como se descreveu anteriormente, o BRS é um sistema de transporte prioritário que opera mediante faixas exclusivas na faixa da direita, sem separação física, pois os veículos não têm restrição no giro à direita. Dependendo da tipologia e do nível de ocupação dos veículos, estes podem entrar ou não na faixa exclusiva, compartilhando com o ônibus seu direito de via. Segundo a definição de direto de passagem de Gray & Hoel (1979) e Vuchic (1981), é possível que esse sistema se localize na categoria tipo C, mas devido às condições especiais do BRS com respeito a sua capacidade e operação poderia chegar à classificação tipo B, onde se encontra o BRT e o VLT. Entretanto, não existe uma definição exata que determine o grupo a que ele pertence. A Figura 5-11 apresenta a relação esquemática da complexidade, capacidade e direito de passagem (A, B e C). Também se apresenta nesse esquema como se encaixa cada sistema de transporte estudado nessa classificação, incluindo o BRS.

São poucos os estudos que apresentam os valores de capacidade desses tipos de sistema. No entanto, na pesquisa de Lerner & NTU (2009) foram identificados alguns aspectos operacionais de projetos similares ao BRS, como ilustra a Tabela 5-4. Neste caso, foi encontrada na literatura uma capacidade estimada de 25.000 passageiros/hora/sentido correspondente à Cidade de Guanzhou, no sul da China, a qual foi utilizada para realizar as respectivas análises devido à semelhança com o BRS.

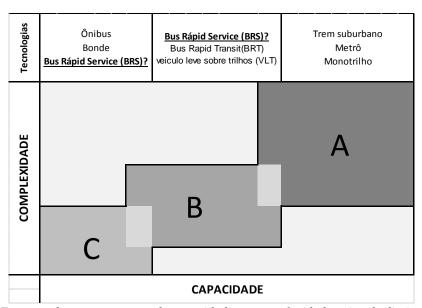


Figura 5-11 Esquema de comportamento da capacidade v.s. complexidade e tipo de direito de passagem

Tabela 5-4 Síntese do Fluxo Máximo de Passageiros em Faixas Exclusivas de Ônibus de algumas cidades

Cidade	Largura (km)	Fluxo Máximo de Ônibus (pass/h/d)	Fluxo Máximo de Passageiros (pass/h/d)	Número Máximo de Itinerários
Teerá - Ira	8	n.d	7000	12
Taipei - Taiwan	7	200	6000	n.d
Guanzhou - China	14	n.d	25000	23
São Paulo - Brasil	15	200	20000	6
Kumming - China	7	n.d	7500	n.d
Seoul - Corea del Sur	15	n.d	12500	n.d

Fonte: (LERNER e NTU, 2009)

Levando em consideração o valor da capacidade e a equação da tendência central adotada nas análises anteriores (Figura 5-10), estimou-se o valor do BRS, como se apresenta na equação (4).

$$Complexidade BRS = 57,70 (4)$$

O índice de complexidade para o BRS calculado foi de 57,70 unidades, bem no limite entre as classificações tipo B e C. No entanto, quando se realizou a pesquisa aos especialistas também foi avaliado o desempenho do BRS de forma similar aos outros sistemas de transporte, sendo possível calcular sua complexidade, aplicando a equação (1) e considerando os pesos e os valores correspondentes de cada parâmetro estudado. Assim, encontrou-se um índice de complexidade de 49,41 unidades, um pouco diferente ao encontrado mediante a curva de tendência, diferença esperada, pois o valor observado com o gráfico de tendência se refere a um valor estimado, que foi calculado teoricamente. Além disso, é importante ressaltar que, como o BRS foi recentemente implantado na Cidade de Rio de Janeiro, não há um precedente geral desse sistema, só de sistemas similares com faixas exclusivas. Por isso, toma-se como valor da complexidade do BRS um valor médio entre esses dois dados, equivalente a 52,86 (Figura 5-12).

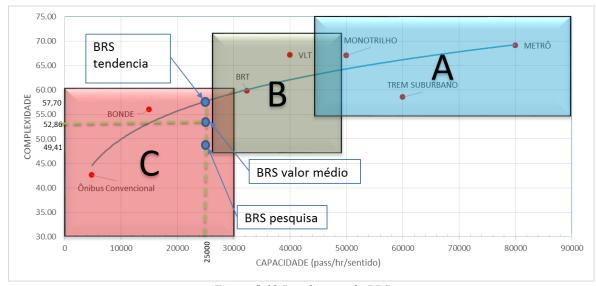


Figura 5-12 Localização do BRS

Depois de se estabelecer e adotar o valor estimado da complexidade para o BRS, comparou-se com os valores dos outros sistemas de transporte, encontrando-o muito próximo ao BRT, que

tem um valor de 59,88. Considerando-se que o BRT está dentro da Categoria B, é possível colocar esse valor como um valor de fronteira entre essas duas categorias. Contudo, o BRS estaria de fato na categoria C. No entanto, como esses sistemas são dinâmicos e a determinação dos limites das categorias é estimativa, poderia se enquadrar facilmente na categoria B quando aumenta sua capacidade, confirmado a hipótese que o sistema BRS está entre os limites dessas duas categorias.

5.1.4 Considerações finais

Os resultados obtidos com o presente trabalho permitiram concluir que a metodologia apresentada é capaz de responder adequadamente aos objetivos propostos, mas poderia ser melhorada com a inclusão de novos atributos ao nível de complexidade, além de utilização de simulação para a determinação mais exata desses atributos. Assim como uma coleta de dados primários mais rigorosos mediante pesquisas de campo e entrevistas.

Ressaltam-se alguns elementos críticos na implantação de sistemas tipo BRS: a correta implantação dos pontos de parada, as regras de operação e, mais importante ainda, o método de fiscalização, fatores determinantes no êxito desse sistema de transporte e que se refletem diretamente no nível de complexidade do sistema.

5.2 SEGUNDA PARTE - ANÁLISES DOS DIFERENTES CENÁRIOS DO BRS CASO COPACABANA, RIO DE JANEIRO

Neste item, estuda-se o comportamento dos diferentes cenários do BRS com relação às interferências causadas por outros tipos de veículos diferentes do ônibus, como são os táxis, veículos particulares, caminhões e motos, além dos diferentes tipos de infraestruturas utilizadas, analisadas sobre o BRS de Copacabana, Rio de Janeiro, especificamente no trajeto da Avenida Nossa Senhora de Copacabana.

5.2.1 CONCEPÇÃO DO PROBLEMA E DOS OBJETIVOS DA SIMULAÇÃO

A classificação e a categorização dos diferentes modos de transporte buscam a intervenção efetiva no planejamento do transporte nas cidades. Embora se encontrem na literatura várias metodologias de classificação, estas não são muito detalhadas nem estudadas. Deixam ao transporte exclusivo por ônibus simplesmente como uma categoria, mas não detalham todas suas possíveis variantes, dependendo de seu modo de operação, infraestrutura e interação com

diferentes tipos de veículo. Por isso, é necessário o estudo das variantes dos sistemas exclusivos em um nível de detalhe microscópico com a finalidade de entender o comportamento do fluxo veicular e assim selecionar a opção mais adequada às características dos locais estudados.

Diante do exposto, adotou-se como caso de estudo o sistema exclusivo para ônibus já implantado na Cidade do Rio de Janeiro, no bairro de Copacabana, onde foi analisado o cenário atual além de vários cenários hipotéticos, estudando as diferentes alternativas e considerando dois aspectos relevantes: a variação da interação com táxis e veículos particulares e as mudanças em sua infraestrutura, variando o número de faixas exclusivas (uma e duas faixas). Desta maneira, pode-se analisar o comportamento do sistema em suas diferentes variações.

As análises são realizadas com base nos modelos de simulação microscópica do caso de estudo, seguindo a metodologia apresentada no capítulo anterior, com o objetivo de identificar as diferenças entre os cenários alternativos.

5.2.2 DESCRIÇÃO GERAL DA ÁREA DE ESTUDO – COPACABANA, RIO DE JANEIRO

Copacabana se caracteriza por ser uns dos principais bairros turísticos na zona sul da cidade e a sua infraestrutura de transporte está baseada em quatro importantes vias: Avenida Nossa Senhora de Copacabana, Rua Barata Ribeiro, Rua Raul Pompéia e Avenida Atlântica. As duas primeiras são as responsáveis pelo deslocamento da maior quantidade das viagens em transporte público do bairro e operam cada uma com um sentido e com quatro faixas de circulação: a Avenida Nossa Senhora de Copacabana segue na direção Centro e a Rua Barata Ribeira/Rua Raul Pompéia, em sentido Copacabana-Ipanema, configurando a entrada e a saída do bairro.

A Avenida Atlântica é um dos principais logradouros de Copacabana, margeando a orla marítima ao longo de seu corredor. Essa via opera com duas faixas por sentido de circulação, com baixa presença do transporte público. Na Figura 5-13 ilustra-se a localização das vias mencionadas.

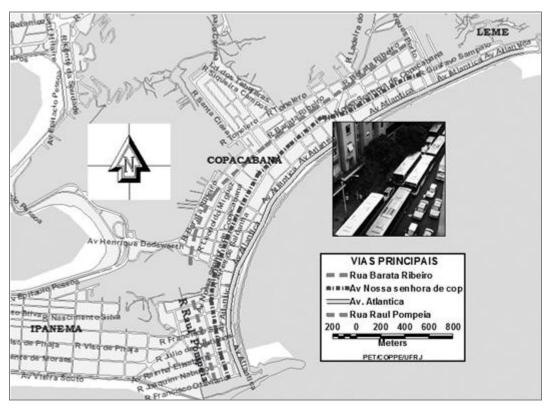


Figura 5-13 Localização vias principais Copacabana

Fonte: elaboração própria a partir de bases de dados da Prefeitura do Rio de Janeiro (2013).

O transporte em Copacabana, até meados de 2010, caracterizava-se por uma mistura entre automóveis privados, táxis e ônibus que operavam de maneira desorganizada e ineficiente, gerando um caos na mobilidade nessa importante zona da cidade. A velocidade média de operação chegava até os 13km/h (FETRANSPOR, 2012). Além disso, apresentava uma sobreoferta de ônibus e altos índices de motorização, os quais agravavam mais a situação.

O BRS em Copacabana iniciou suas operações na Avenida Nossa Senhora de Copacabana, com a utilização das duas faixas da esquerda (das quatro existentes) para o uso preferencial do ônibus, como se ilustra Figura 5-14.

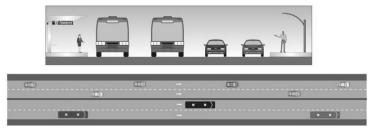


Figura 5-14 Distribuição de faixas para o BRS Fonte: Fetranspor (2012).

O setor escolhido para o caso de estudo atende a alguns requisitos básicos:

- Setor com sistema de transporte público priorizado, com direito de passagem Tipo C, segundo a classificação adotada por Vuchic (1981);
- Existência de dados físicos como mapas, imagens digitais, dados de fiscalização eletrônica, planos semafóricos e fluxos veiculares;
- Facilidade de aquisição de dados adicionais por meio de coletas de dados em campo;
- Interação com outros veículos de transporte motorizado, como táxis, motos e veículos particulares e de carga;
- Características físicas e geométricas acessíveis e seguras para a coleta de dados;
- Sistema urbano operativo em funcionamento.

Escolheu-se estudar, contudo, o sistema de transporte BRS, sistema de transporte público preferencial, implantado na Avenida Nossa Senhora de Copacabana, na região sul do Município de Rio de Janeiro, desde o ano 2011.

Esse corredor viário encontra-se em uma área de uso de solo residencial, comercial e de tratamento turístico limitado a sudoeste pela Rua Francisco Octaviano e a nordeste pela Avenida Princesa Isabel. Tem uma extensão de aproximadamente 3,5 quilômetros, é composta por 28 interseções. O fluxo dessa avenida se desloca por uma pista de 4 faixas no mesmo sentido, das quais atualmente duas são para o transporte coletivo e as outras duas para o transporte comum (veículos particulares e veículos de carga) e táxis (Tabela 5-5).

Tabela 5-5 Características Avenida Nossa Senhora de Copacabana

Avenida	Nossa senhora de Copacabana		
No de faixas	4		
Largura de faixa (m)	3.5		
Interseções	28		
Com semáforo	26		
Sinal de Pare	2		

5.2.3 CENÁRIOS PROPOSTOS

Ao se considerar a proposta de subclassificação segundo o nível de interferência introduzido ao final do Capítulo 3 e a infraestrutura do caso de estudo, os diferentes cenários serão divididos em dois grupos: o primeiro refere-se aos sistemas exclusivos para ônibus com uma faixa e o segundo grupo representa o sistema exclusivo em duas faixas. Cada um desses grupos se divide em vários cenários, de acordo com a variação da interferência dos tipos de veículos diferentes ao ônibus que podem entrar no sistema (táxis com passageiros e veiculo para fazer conversão à direita). A Tabela 5-6 apresenta os cenários criados neste estudo, compreendendo a situação base e as propostas, levando em conta que o estado atual do modelo corresponde ao Cenário 4 da simulação.

Tabela 5-6 Cenários utilizados no estudo.

The end of a center to a minigation in a comment						
INTERFERÊNCIAS OU TRATAMENTO	Cenário 1	Cenário 2	Cenário 3	Cenário 4	Cenário 5	Cenário 6
Faixas exclusivas	1	1	1	2	2	2
Táxis com passageiros na Faixa	Sim	Sim	Não	Sim	Sim	Não
Carros na faixa com giro à direita	Sim	Não	Não	Sim	Não	Não

5.2.4 LEVANTAMENTO E CODIFICAÇÃO DOS DADOS

Para o processo de construção, calibração e execução do modelo, foi necessária uma coleta de dados por vários meios: no sítio, *sites* da *web* especializados em dados de transporte da cidade e dados fornecidos por entidades governamentais da cidade, ou por meio de pesquisa bibliográfica em livros, revistas e dissertações. Na Tabela 5-3Tabela 5-7 se apresenta um resumo das informações obtidas e sua fonte para facilitar o processo de simulação.

Tabela 5-7 Fontes de Informação requerida para alimentar o modelo de micro simulação.

Informação	Utilidade	Objetivo	Fonte
Cartografia existente	Geometria	Construção da rede	Base de dados CET-Rio 2013 web
Fotos satélite	Geometria	Construção da rede	Google Earth. Atualização dezembro de 2013.
Levantamento da rede viária	Largura e número de faixa, estado do pavimento e sinalização, direção.	Codificação de "Arcos" ou "Links"	Elaboração própria.
Levantamento de interseções	Identificação das interseções que operam por meio de semáforos e sistema de parada.	Codificação das interseções	Elaboração própria.
Ciclos semafóricos na hora de pico	Identificação dos ciclos semafóricos em cada interseção	Elaborar a rede de semáforos do corredor de estudo	Elaboração própria.

Informação	Utilidade	Objetivo	Fonte
Pesquisa do transporte público	Identificação de rotas de transporte público, pontos de parada e frequências.	Incorporação do transporte público.	Utilização de Google Maps e pesquisas de campo em pontos de parada BRS1, BRS2 e BRS 3.
Medições de Fluxo veicular	Volumes veiculares por arco e movimento, fator hora de máxima demanda (FHMD) e intensidade de fluxo.	Informação de demanda e fluxo de tráfego.	Elaboração própria CET-RIO
Visitas a terreno	Comportamento dos condutores, largura de filas, velocidades, acelerações/desacelerações e elaboração de vídeos da mobilidade atual, etc.	Construção da rede e calibração.	Elaboração própria.

Os dados coletados foram devidamente codificados e processados com a finalidade de alimentar o modelo base a ser estudado, assim como os cenários propostos. Na seção seguinte são detalhados o processo de coleta de dados e seu processamento.

Como abordado na metodologia, a coleta de dados se divide em duas partes: A primeira corresponde aos dados estatísticos e geométricos da rede para construção e codificação. A segunda, aos dados de fluxo veicular no sistema.

5.2.5 DADOS ESTATÍSTICOS PARA CODIFICAÇÃO E CONSTRUÇÃO DA REDE

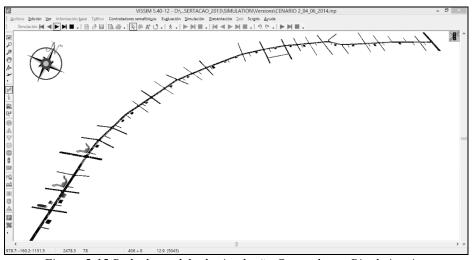


Figura 5-15 Rede do modelo de simulação Copacabana, Rio de janeiro.

Com objetivo de caracterizar o tráfego da rede viária urbana e fazer a montagem da rede inicial da simulação (Figura 5-15), se realizaram coletas de dados em duas etapas: a primeira foi executada como trabalho de escritório, com ajuda de imagens digitais e fotografias das vias fornecidas pelas ferramentas *Google Earth* e *Google Maps*. A partir das quais se obtiveram dados da geometria da rede, número de interseções, sentidos viários preliminares,

número de faixas e pontos de parada. A partir desse processo foi possível codificar e catalogar a rede inicial.

Em uma segunda etapa, por meio de uma primeira visita à zona de estudo, se avaliaram e complementaram os dados coletados no escritório. Além disso, foram obtidas as larguras aproximadas das faixas, os nomes das ruas e uma percepção visual das interseções relevantes, considerando de forma visual a taxa do fluxo veicular e a infraestrutura do local. Na Tabela 5-8, são ilustrados os dados iniciais coletados em campo correspondentes à geometria da rede.

Tabela 5-8 Características das ruas que apresentam interseção com a Avenida Nossa Senhora de Copacabana

Na interseção	Rua	N° de faixas	Largura faixa (m)	Sentido	Observação
1	Rua Joaquim Nabuco	2	3	S-N	
2	Rainha Elisabeth	3	3	S-N	
3	Júlio de Castilhos	1	3.5	N-S	
4	Francisco sá	3	3.5	N-S	Interseção critica
5	Sousa Lima	1	3.5	S-N	
6	Sá. Ferreira	2	3	N-S	
7	Djalma Ulrich	1	3.5	S-N	
8	Miguel lemus	2	3.5	N-S	
9	Xavier da Silveira	1	3.5	N-S	
10	Bolívar	2	3	S-N	Interseção critica
11	Barão de Ipanema	1	3.5	S-N	
12	Constante Ramos	2	3	N-S	
13	Dias da Rocha	Pedestres	Pedestres	Pedestres	Pedestres
14	Santa Clara	2	2.5	N-S	Alto fluxo
15	Figueiredo de Magalhães	3	3	S-N	Interseção critica
16	Siqueira Campos	3	3	N-S	Interseção critica
17	Hilário de Gouvêia	2	3	N-S	
18	Paula Freitas	1	4	S-N	
19	República do Peru	1	5	S-N	
20	Rodolfo Dantas	1	4	N-S	
21	Duvidier	1	4	S-N	
22	Ronald de Carvalho	1	4	N-S	
23	Belfort Roxo	1	3.5	S-N	
24	Prado Junior	2	3	N-S	Interseção critica
25	Princesa Isabel	4 5	3-3.5	N-S	
26	Raimundo	1	4	S-N	
27	Fernando mendes	1	3.5	S-N	
28	Raimundo Constante	2	3	N-S	

Foram encontradas 26 interseções com semáforo e 2 sem. Além disso, foram identificadas várias interseções relevantes devido a seu alto fluxo veicular. Uma delas é a Rua Francisco Sá com Avenida Nossa Senhora de Copacabana, pela qual entra na rede a maioria dos veículos de transporte público e do tráfego geral na rede, constituindo-se como um ponto crítico no setor.

Outras interseções encontradas na rede com alto fluxo veicular sobre a Avenida Nossa senhora de Copacabana são as Ruas Bolívar, Santa Clara, Figueiredo de Magalhães, Siqueira Campos e Prado Júnior.

Além dessa informação, também foram coletados dados de localização das garagens dos prédios no acostamento à direita da Avenida Nossa Senhora de Copacabana em relação ao fluxo da corrente veicular. Na Tabela 5-9, são apresentados esses dados.

Tabela 5-9 Nº de garagens sobre o acostamento à direita da Avenida Nossa Senhora de Copacabana

No	Rua Anterior	Rua posterior	Quantidade garagens
1	Francisco octaviano	Aquino Nabuco	1
2	Aquino Nabuco	Rainha Elisabeth	1
3	Rainha Elisabeth	Julho de Castilhos	3
4	Julho de Castilhos	Francisco Sá	4
5	Francisco Sá	Souza lima	3
6	Souza lima	Sá. Ferreira	2
7	Sá. Ferreira	Almirante Gonçalves	3
8	Almirante Gonçalves	Djalma Ulrich	4
9	Djalma Ulrich	Miguel lemos	3
10	Miguel lemos	Xavier da Silveira	Não tem
11	Xavier da Silveira	Bolívar	2
12	Bolívar	Barão de Ipanema	2
13	Barão de Ipanema	Constante Ramos	1
14	Constante Ramos	Raimundo Correa	5
15	Raimundo Correa	Santa clara	2
16	Santa clara	Figueiredo de Magalhães	4
17	Figueiredo de Magalhães	Siqueira campos	2
18	Siqueira campos	Hilário de Gouvêa	Não tem
19	Hilário de Gouvêa	Paula Freitas	1
20	Paula Freitas	República do peru	2
21	República do peru	Inhanga	Não tem
22	Inhanga	Fernando Mendes	2
23	Fernando Mendes	Rodolfo Dantas	2
24	Rodolfo Dantas	Duvivier	2
25	Duvivier	Ronald de Carvalho	2

No	Rua Anterior	Rua posterior	Quantidade garagens
26	Ronald de Carvalho	Belfort. Roxo	Não tem
27	Belfort. Roxo	Prado Júnior	1
28	Prado Júnior	Princesa Isabel	1

No total foram encontradas 57 garagens no acostamento à direita do corredor. É importante ressaltar que não foram coletados os dados do outro acostamento, pois esses não afetam diretamente a faixa exclusiva. No entanto, esses fluxos estarão implicitamente nos fluxos fornecidos pela rede e que serão ilustrados mais adiante.

Outra informação relevante para a configuração da rede é a coleta de dados do transporte público, os quais se conformam principalmente pelos pontos de parada do ônibus e o trajeto das linhas de ônibus existentes no corredor. Essa informação foi coletada ao serem consideradas várias fontes de informação. Inicialmente foram identificados os pontos de parada por meio de dados obtidos no site da Fetranspor¹¹ e no *Google Maps*, onde se encontraram mapas e esquemas de sua localização, assim como indicações do número das linhas de transporte público que operam dentro do corredor. Posteriormente no trabalho de campo se confirmaram essas informações.

Foram encontrados 19 pontos de parada distribuídos por três tipos: BRS1, BRS2 e BRS3. A Figura 5-16 apresenta a localização de cada ponto e a Tabela 5-10, a codificação de cada um deles, sua denominação, tipo de BRS e número de linhas em cada caso.

¹¹ Federação das Empresas de Transportes de Passageiros do Estado do Rio de Janeiro (http://brsrio.com.br/zona-sul/brs-copacabana/).

Figura 5-16 Pontos de parada de ônibus na Avenida Nossa Senhora de Copacabana. Fonte: Imagem modificada de Google Earth

Tabela 5-10 Pontos de parada de Ônibus na Avenida Nossa Senhora de Copacabana

Ponto de parada	Nome	Tipo BRS	Nº Linhas
1	Joaquin Nabuco	BRS 3	7
2	Rainha Elisabeth	BRS 1	3
3	Sousa Lima	BRS 3	16
4	Sá Ferreira	BRS 1	12
5	Djalma Ulrich	BRS 2	15
6	Miguel Lemos	BRS 1	12
7	Bolívar	BRS 3	16
8	Barão de Ipanema	BRS 2	18
9	Constante Ramos	BRS 1	13
10	Raimundo Correa	BRS 3	16
11	Santa Clara	BRS 2	17
12	Figueiredo de Magalhães	BRS 1	13
13	Siqueira Campos	BRS 3	16
14	Hilário Gouveia	BRS 2	15
15	Paula de Freitas	BRS 1	11
16	Republica de Peru	BRS 2	15
17	Fernando Mendes	BRS 3	15
18	Rodolfo Dantas	BRS 1	11
19	Belfort Roxo	BRS 2	15

Com relação aos dados das linhas de transporte público, foi fornecida uma base de dados com o número das linhas operantes no setor e sua respetiva denominação por meio do site da Fetranspor, onde se obteve a informação dos pontos de parada do BRS. No entanto, essa

informação foi verificada no trabalho de campo, a partir da qual se encontraram algumas linhas inoperantes, além de novas linhas. Assim, foram atualizadas as bases de dados obtidas.

Para obter a frequência de cada linha, foi selecionado um local por onde passavam todas elas e, então, nos períodos escolhidos, foi realizada a contagem de cada linha de ônibus que passava, sendo estimado o número de ônibus por hora de cada linha, como é apresentado na Tabela 5-11.

Tabela 5-11 Linhas de transporte público na Avenida Nossa Senhora de Copacabana

BRS	LINHA	DENOMINAÇÃO	Ônibus/hora
	119	COPACABANA X CANDELÁRIA – CIRCULAR	3
	121	CENTRAL X COPACABANA – CIRCULAR	13
	123	JARDIM DE ALAH X CANDELÁRIA (CIRCULAR)	3
	124	JARDIM BOTÂNICO (HORTO) X CENTRAL (VIA COPACABANA)	1
	125	CENTRAL X GENERAL OSORIO (VIA ATERRO DO FLAMENGO) – CIRCULAR	21
	126	rodoviária x copacabana (via túnel santa barbara) – circular	5
	130	LEBLON - PRAÇA XV	6
DDC 1	132	CENTRAL X LEBLON (VIA ATERRO DO FLAMENGO) – CIRCULAR	8
BRS 1	136	rodoviária x copacabana (via leopoldina) circular	1
	154	IPANEMA X CENTRAL	5
	155	IPANEMA X CENTRAL (VIA TÚNEL SANTA BARBARA)	3
	161	LAPA X LEBLON (VIA JÓQUEI) CIRCULAR	5
	177	SÃO CONRADO X CANDELÁRIA – CIRCULAR	7
	557	RIO DAS PEDRAS - COPACABANA	10
	2015	CASTELO – LEBLON	4
	2017	RODOVIÁRIA – LEBLON	5
	127	RODOVIÁRIA X COPACABANA – CIRCULAR	6
	128	LEBLON X RODOVIÁRIA (VIA COPACABANA)	6
	413	MUDA X JARDIM DE ALAH (VIA ATERRO DO FLAMENGO)	9
	415	USINA X LEBLON – CIRCULAR	12
	426	USINA X JARDIM DE ALAH (VIA TÚNEL SANTA BARBARA)	6
	432	VILA ISABEL X LEBLON (VIA TÚNEL SANTA BARBARA) – CIRCULAR	5
	433	VILA ISABEL X LEBLON (VIA COPACABANA) – CIRCULAR	5
	434	GRAJAU X LEBLON – CIRCULAR	7
	435	GRAJAU X GÁVEA (VIA TÚNEL SANTA BARBARA)	7
DDC O	441	CAJU X LIDO (VIA SÃO CRISTÓVÃO/TÚNEL REBOUÇAS) – CIRCULAR	4
BRS 2	462	SÃO CRISTÓVÃO X COPACABANA (VIA TÚNEL REBOUÇAS) – CIRCULAR	4
	464	MARACANÃ X LEBLON	2
	473	SÃO JANUÁRIO X LIDO (VIA TÚNEL REBOUÇAS)	1
	474	JACARÉ X JARDIM DE ALAH	15
	511	URCA X LEBLON (VIA JÓQUEI) – CIRCULAR	4
	535	VIDIGAL - COPACABANA (VIA AV. NIEMEYER / IPANEMA) (CIRCULAR)	3
	539	rocinha - leme (via estrada da gávea / copacabana) (circular)	9
	569	LARGO DO MACHADO X LEBLON (VIA JÓQUEI) – CIRCULAR	5
	573	GLORIA X LEBLON (VIA JÓQUEI) – CIRCULAR	2
	583	COSME VELHO X LEBLON (VIA JÓQUEI) – CIRCULAR	6

BRS	LINHA	DENOMINAÇÃO	Ônibus/hora
	308	BARRA DA TIJUCA X CENTRAL (VIA COPACABANA/AVENIDA DAS AMÉRICAS)	5
	314	recreio dos bandeirantes x central (via copacabana / av. das américas)	2
	354	CIDADE DE DEUS X PRAÇA XV	4
	360	CARIOCA X RECREIO DOS BANDEIRANTES	4
	382	PIABAS X CARIOCA (VIA ESTRADA BENVINDO DE NOVAES)	8
	402	ENGENHO DA RAINHA X GÁVEA	1
0000	455	ENGENHO NOVO X COPACABANA (VIA PARQUE DO FLAMENGO)	9
BRS 3	456	NORTE SHOPPING X GENERAL OSORIO (VIA TÚNEL SANTA BARBARA)	3
	457	ABOLIÇÃO X GENERAL OSORIO (VIA TÚNEL SANTA BARBARA)	10
	483	PENHA X COPACABANA (CIRCULAR)	6
	484	BONSUCESSO X COPACABANA (CIRCULAR)	8
	485	PENHA X GENERAL OSORIO (VIA TÚNEL SANTA BARBARA)	10
	486	FUNDÃO X GENERAL OSORIO	1
	740D	CHARITAS - IPANEMA	10

Considerando que o VISSIM permite incluir o trajeto de cada linha de transporte público com a finalidade de fazer uma melhor análise, foi necessário identificar cada trajeto com o objetivo de codificá-los na rede, utilizando o aplicativo administrado também pela Fetranspor, nomeado "Vádeônibus". O aplicativo contém uma extensa base de dados atualizada de todas as linhas de transporte por ônibus da Cidade de Rio de Janeiro e pode ser apresentada de maneira gráfica mediante mapas. Também inclui informações de preço da tarifa, denominação da linha e informação detalhada do seu itinerário (Figura 5-17).

¹² www.vadeonibus.como.br. - Aplicativo web.

Figura 5-17 Aplicativo da web "vadeonibus"

Finalmente foram coletados dados referentes ao controle semafórico das interseções. Essa informação foi obtida diretamente no local de cada interseção de forma visual no horário de pico, utilizando um cronômetro com um grau de precisão de centésimos de segundo, conforme apresenta a Tabela 5-12.

Tabela 5-12 Planos semafóricos das interseções sobre a Avenida Nossa Senhora de Copacabana

INTERSEÇÃO		FASE	CICLO (mim)	
		VERMELHO	AMARELO	CICLO (mim)
Nossa Senhora de Copacabana x Rua Joaquim Nabuco	00:49.9	01:26.0	00:03.0	02:18.9
Nossa Senhora de Copacabana x Rainha Elisabeth	00:48.4	01:17.0	00:02.6	02:08.0
Nossa Senhora de Copacabana x Julio de Castilhos	00:57.0	01:10.6	00:02.8	02:10.4
Nossa Senhora de Copacabana x Francisco Sá	00:53.1	01:24.0	00:02.9	02:20.0
Nossa Senhora de Copacabana x Sousa Lima	01:32.0	00:46.4	00:02.5	02:20.9
Nossa Senhora de Copacabana x Sá. Ferreira	01:27.8	00:48.2	00:03.9	02:19.9
Nossa Senhora de Copacabana x Djalma Ulrich	01:10.4	01:05.9	00:02.9	02:19.2
Nossa Senhora de Copacabana x Miguel Lemus	01:13.9	01:03.3	00:02.8	02:20.0
Nossa Senhora de Copacabana x Xavier da Silveira	01:13.7	01:03.7	00:02.8	02:20.2
Nossa Senhora de Copacabana x Bolívar	01:17.9	00:59.0	00:03.1	02:20.0
Nossa Senhora de Copacabana x Barão de Ipanema	01:30.0	00:47.1	00:02.9	02:20.0
Nossa Senhora de Copacabana x Constante Ramos	01:19.1	00:57.1	00:03.1	02:19.3
Nossa Senhora de Copacabana x Dias da Rocha	01:52.0	00:25.1	00:02.9	02:20.0
Nossa Senhora de Copacabana x Santa Clara	01:17.1	00:59.9	00:03.0	02:20.0

		FASE		
INTERSEÇÃO		VERMELHO	AMARELO	CICLO (mim)
Nossa Senhora de Copacabana x Figueiredo de Magalhães	01:29.9	00:53.3	00:02.9	02:26.1
Nossa Senhora de Copacabana x Siqueira Campos	01:15.8	01:00.3	00:03.9	02:20.0
Nossa Senhora de Copacabana x Hilário de Gouvêia	01:32.1	00:45.1	00:02.8	02:20.0
Nossa Senhora de Copacabana x Paula Freitas	01:40.9	00:36.1	00:03.0	02:20.0
Nossa Senhora de Copacabana x República do Peru	01:35.0	00:42.1	00:02.7	02:19.8
Nossa Senhora de Copacabana x Rodolfo Dantas	01:34.0	01:03.6	00:02.9	02:40.5
Nossa Senhora de Copacabana x Duvivier	01:31.9	01:05.2	00:02.9	02:40.0
Nossa Senhora de Copacabana x Ronald de Carvalho	01:25.0	01:12.2	00:02.8	02:40.0
Nossa Senhora de Copacabana x Belfort Roxo	01:20.2	01:17.0	00:02.8	02:40.0
Nossa Senhora de Copacabana x Prado Junior	01:25.6	01:11.5	00:02.9	02:40.0
Nossa Senhora de Copacabana x Princesa Isabel	01:01.7	01:34.5	00:03.8	02:40.0

Foram encontrados ciclos semafóricos entre 140 e 160 segundos de cada interseção. Cabe ressaltar que essa avenida não tem sistema de prioridade semafórico para ônibus nas interseções.

5.2.6 Dados dinâmicos ou de demanda da zona se estudo

A rede de estudo contempla um total de 26 interseções que atendem a todo fluxo veicular e à demanda de viagens do setor em análise. Por isso, é necessária a pesquisa de dados de fluxo veicular com a finalidade de alimentar esse modelo e assim poder estudar os diferentes cenários. É importante esclarecer que esse estudo não faz uma análise exaustiva dessa informação devido às limitações e implicações que um levantamento de informações do total da rede em estudo apresenta. A pesquisa está centrada na análise de informações já coletadas e fornecidas pelas entidades públicas, sendo algumas coletadas pelo autor com o objetivo de complementar e equilibrar a rede.

As informações referentes à demanda do modelo serão representadas por fluxos horários a cada 15 minutos em uma hora de pico com distribuição modal (auto, ônibus, táxi, moto e caminhão). Esses volumes veiculares foram obtidos por meio de duas fontes: a primeira, pela Companhia de Tráfego e Transporte do Rio de Janeiro (CET-Rio), a qual forneceu o fluxo horário de algumas interseções e pontos da Avenida Nossa Senhora de Copacabana e também informações referentes a tempos de viagem, sendo esta última informação indispensável para a estimativa da velocidade média dos veículos e para a calibração do modelo. A segunda fonte

de informação foi obtida mediante trabalhos de campo por meio de contagens veiculares à direita no local com a finalidade de complementar ou atualizar os dados existentes. Na Tabela 5-13 se apresenta um resumo dos locais com dados do fluxo veicular utilizados nesta pesquisa. Cabe ressaltar que esses volumes foram obtidos depois da implantação do BRS.

Tabela 5-13 Dados de fluxo veicular e tempos de viagem obtidos para o modelo

INTERSEÇÃO PRÓXIMA	Nome Interseção	TIPO DE DADOS	DATA DE COLETA	FONTE
15	Avenida Nossa Senhora de Copacabana x Figueiredo de Magalhães	Contagens de fluxo veicular por tipo de veiculo	13/06/2012, quarta-feira	CET-Rio
19	Avenida Nossa Senhora de Copacabana x Rua República do Peru (3 movimentos)	Contagens de fluxo veicular totais sem tipo de veiculo	08-09-10 /11/2011, terça, quarta e quinta-feira.	CET-Rio
4 - 23	Entre Rua Frâncico Sá (ponto A) e a Rua Princesa Isabel (Ponto C)	Contagens de tempos de viagem - Estudo de placas	17/05/2013 e 08/07/2013, sexta e segunda-feira respectivamente.	CET-Rio
4	Avenida Nossa Senhora de Copacabana x Rua Francisco Sá	Contagens fluxo veicular por tipo de veiculo	4 de dezembro de 2013, quinta-Feira	Trabalho de campo
24	Avenida Nossa Senhora de Copacabana entre Rua Prado Junior e a Rua Princesa Isabel	Contagens fluxo veicular por tipo de veiculo	13 de março de 2013, quinta-feira	Trabalho de campo

Com a finalidade de encontrar os períodos de pico da área estudada, foi realizada uma análise dos dados obtidos levando em consideração o fluxo horário total por interseção, expressa em veículos equivalentes, para o qual se utilizaram os seguintes fatores de equivalência:

Tabela 5-14 Fatores de equivalência por unidade de carros de passeio (UCP)

VEICULO	FATOR DE EQUIVALÊNCIA UCP
Automóveis, van	1
Ônibus	2.25
Caminhão	1.75
Moto	0.33

$$Veiculos \ UCP = autom\'oveis + van + (2.25 * \^onibus) + (1.75 * caminh\~ao) + (0.33 * Moto)$$

Além da identificação dos períodos de pico, foi observada a distribuição veicular de cada interseção estudada, levando em consideração seus fluxos totais. Na próxima seção, serão apresentadas as análises dos dados coletados de cada interseção. Cabe ressaltar que os dados fornecidos pela CET-Rio são apresentados no Anexo A deste trabalho.

i. Avenida Nossa Senhora de Copacabana x Rua Figueiredo de Magalhães

Esta interseção se localiza sobre o nó de número 15 da rede e se caracteriza por ser uns dos cruzamentos com alto fluxo veicular devido a sua conexão e ampla infraestrutura. Como se ilustra na Figura 5-18, o comportamento do tráfego, para um dia típico de quarta-feira, apresenta uma tendência uniforme com pequenas flutuações na manhã, aumentando nas horas da tarde, onde se identifica o maior pico das 17:00 até as 18:00 da noite, com um volume de 4062 veic-ucp /hr. Durante a parte da manhã, o horário de pico fica no período das 8:15 até as 9:15, com 3891 veic-ucp /hr trafegando pela interseção.

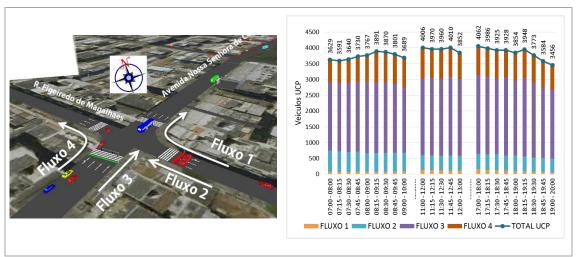


Figura 5-18 Fluxo horário de veículos UCP na interseção Fonte: Base de dados CET-Rio (2012).

Por outro lado, na distribuição veicular apresentada na Figura 5-19, observa-se que os veículos individuais e os táxis predominam na interseção, representando 86% do total de veículos no cruzamento durante todo o dia, seguidos pelo ônibus com 9%.

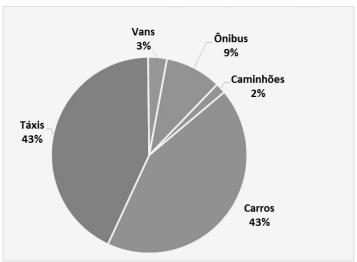


Figura 5-19 Distribuição veicular da Avenida Nossa Senhora de Copacabana com a Rua Figueiredo de Magalhães
Fonte: Base de dados CET-Rio (2011).

ii. Avenida Nossa Senhora de Copacabana entre Rua Figueiredo de Magalhães e Rua Siqueira Campos.

Na Figura 5-20, são ilustradas as análises dos fluxos veiculares horários no ponto localizado entre a Rua Figueiredo de Magalhaes (Nó 15) e a Rua Siqueira Campos (Nó 16). O período de pico da manhã continua entre 8:15 e 9:15, com 1.668 veic-ucp/h, aumentando gradualmente e chegando a um período de pico da noite entre 18:00 e 17:00 horas, com 2.123 vei-ucp/h.

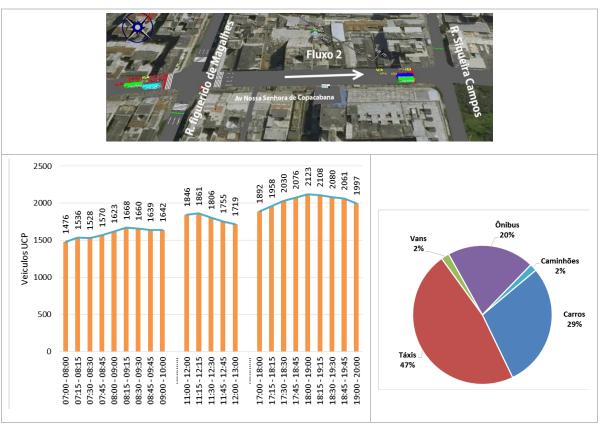


Figura 5-20 Fluxo horário e distribuição percentual no dia do ponto de coleta de dados entre a Rua Figueiredo de Magalhaes e Rua Siqueira Campos,

Ressalta-se nesta interseção o percentual de táxis (47%) maior que os veículos individuais (29%). O percentual de ônibus é maior que na interseção anterior (20%), no entanto, deve-se levar em conta que nesta foi considerado que o fluxo total de todos os movimentos do cruzamento e fluxos da Rua Figueiredo da Magalhães apresentam um percentual muito baixo de ônibus assim como de táxis, com baixos percentuais atribuídos, o que não acontece no caso em que o fluxo total corresponde somente aos veículos que trafegam pela Avenida Nossa Senhora de Copacabana, onde trafega a maioria dos ônibus e de veículos do setor.

iii. Avenida Nossa Senhora de Copacabana x Rua República do Peru (2 movimentos)

Esta interseção corresponde ao nó de número 19 da rede, localizado na altura da Rua República do Peru. Os dados fornecidos pela companhia de tráfego são apresentados no Anexo A e referem-se aos volumes horários totais da interseção que foram coletados durante três dias no mês de setembro de 2011 por meio de um contador pneumático durante todo o dia. Na Figura 5-21 é apresentado o esquema de operação da interseção.

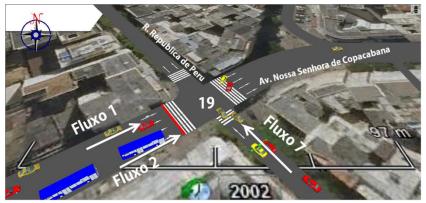


Figura 5-21 Esquema da Interseção da Avenida Nossa Senhora de Copacabana com Rua Republica do Peru.

Cabe ressaltar que o Fluxo 1 corresponde aos veículos que trafegam pelas faixas comuns e o Fluxo 2, às contagens sobre as faixas exclusivas do BRS. Para a análise dessa interseção, foram adotados os valores médios de cada hora, onde se observou seu maior pico nas horas da noite entre as 17 e 18 horas e da manhã entre as 10 e 11 horas. Também foi encontrado que nas faixas exclusivas se apresenta um fluxo de 33%, que corresponde aos ônibus, táxis ocupados e veículos que saem das garagens ou desejam girar à direita (Fluxo 2). Nas outras faixas, 58% correspondem à corrente veicular do tráfego geral (veículos particulares, caminhões motos, e táxis vazios). Na Figura 5-22 são ilustrados esses valores e a distribuição horária da interseção.

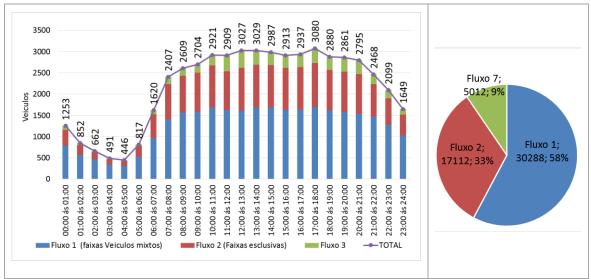


Figura 5-22 Distribuição horária da corrente veicular por tipo de fluxo Avenida Nossa Senhora de Copacabana com Rua República de Peru

Fonte: Base de dados CET-Rio (2011).

Levando-se em consideração que os fluxos fornecidos pelas entidades públicas não são suficientes para alimentar o modelo, foi necessário realizar uma coleta de dados diretamente no local, para a qual se adotou como período de análise o pico da manhã, embora a quantidade de veículos seja maior no período da noite. Isso devido à facilidade de coleta dos dados pela manhã e por um nível de segurança mais adequado, contudo se considerou como horário de pico o período entre das 8:15 até as 9:15 da manhã, segundo os dados analisados anteriormente.

Nesse período foi executada a coleta de dados complementar que foi realizada no início e no final da rede, na altura da Rua Francisco Sá (nó 4) e Prado Junior (nó 25), no dia 4 de dezembro de 2013. A coleta dessa informação complementar teve como objetivo em primeira instância identificar o fluxo veicular presente nos diferentes movimentos de cada cruzamento e em segundo lugar, os percentuais de veículos individuais autorizados que trafegam pela faixa exclusiva (táxis ocupados, veículos que saem das garagens e veículos que desejam girar à direita)

Esses percentuais foram aplicados aos volumes da rede no período de análise com o objetivo de que o modelo estivera mais próximo à realidade. Segue uma análise dos dados coletados em campo.

iv. Avenida Nossa Senhora de Copacabana com a Rua Francisco Sá (Nó número 4)

Este cruzamento é constituído por quatro fluxos e movimentos, sendo que os Fluxos 1 e 4 correspondem à corrente veicular que segue no sistema sobre o corredor principal e os Fluxos 2 e 3 correspondem aos fluxos que saem da rede pela Rua Francisco Sá, como se apresenta na Figura 5-23.

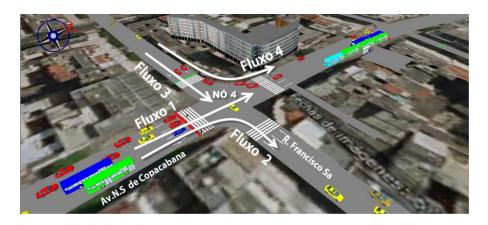


Figura 5-23 Esquema dos fluxos estudados na interseção da Avenida Nossa Senhora e Copacabana com Rua Francisco Sá

Foram coletados os dados de cada fluxo no período de pico adotado, em intervalos de 15 minutos. O banco de dados com os fluxos coletados está apresentado na Tabela 5-15.

Tabela 5-15 Fluxo de volumes veiculares coletados em campo, Rua Francisco Sá com Av. Nossa Senhora de Copacabana

FLUXO	PERÍODO DE PICO	ÔNIBUS	VEÍCULOS	TÁXIS	CAMINHÕES	MOTOS	Total
	8:15 - 8:30	20	50	50	1	0	121
	8:30 - 8:45	14	46	55	4	2	121
1	8:45 - 9:00	14	43	50	2	2	111
	9:00 - 9:15	16	62	56	3	1	138
	Subtotal	64	201	211	10	5	491
	8:15 - 8:30	0	2	1	0	2	5
	8:30 - 8:45	0	2	1	0	1	4
2	8:45 - 9:00	0	4	1	0	1	6
	9:00 - 9:15	0	2	3	0	1	6
	Subtotal	0	10	6	0	5	21
	8:15 - 8:30	0	55	19	5	6	85
	8:30 - 8:45	0	91	40	6	2	139
3	8:45 - 9:00	0	82	35	10	7	134
	9:00 - 9:15	0	63	25	11	6	105
	Subtotal	0	291	119	32	21	463
	8:15 - 8:30	48	48	81	1	0	178
	8:30 - 8:45	50	50	67	3	2	172
4	8:45 - 9:00	56	56	84	6	1	203
	9:00 - 9:15	50	50	78	4	0	182
	Subtotal	204	204	310	14	3	735
Total	8:15 - 9:15	268	706	646	56	34	1710
Percentual	8:15 - 7:15	16%	41%	38%	3%	2%	100%

Como resultado da coleta de dados, foram totalizados 1710 vei/h, dos quais 41% são veículos individuais, 38% são táxis e 19% são destinados ao tráfego por ônibus.

Além dessa informação, também foram coletadas contagens de veículos que circulam pela faixa exclusiva para ônibus. Cabe lembrar que somente os veículos que desejam girar à esquerda podem entrar na faixa preferencial para ônibus no quarteirão anterior, assim como os veículos que saem das garagens e os táxis com passageiros. Esses últimos podem trafegar sem restrição pela faixa. Contudo, foi realizada uma contagem desses veículos no mesmo período de pico sobre o Fluxo 1 e Fluxo 4. Para isso, foram nomeados "VEÍCULO BRS" e 'TÁXIS BRS" aos veículos que circulam nas faixas exclusivas (Tabela 5-16).

Tabela 5-16 Distribuição veicular dos fluxos no cruzamento

FLUXO	HORÁRIO	ÔNIBUS	VEÍCULOS BRS	VEÍCULOS	TÁXIS BRS	TÁXIS	CAMINHÕES	MOTOS	TOTAL
	8:15 - 8:30	20	5	45	15	35	1	0	121
	8:30 - 8:45	14	0	46	23	32	4	2	121
1	8:45 - 9:00	14	1	42	28	22	2	2	111
	9:00 - 9:15	16	0	62	30	26	3	1	138
	Subtotal	64	6	195	96	115	10	5	491
	8:15 - 8:30	48	7	42	31	50	1	0	179
	8:30 - 8:45	50	2	58	15	52	3	2	182
4	8:45 - 9:00	56	2	42	25	59	6	1	191
	9:00 - 9:15	50	1	50	27	51	4	0	183
	Subtotal	204	12	192	98	212	14	3	735
Total	0.15 0.15	268	18	387	194	327	24	8	1226
Percentual	8:15 - 9:15	22%	1%	32%	16%	27%	2%	1%	100%

Desta forma, foi encontrado um percentual aproximado dos veículos que trafegam dentro da faixa do BRS que serve como estimativa para toda a rede, garantindo que a faixa segregada tenha sempre veículos desse tipo. No entanto, o cálculo desse percentual foi realizado sem levar em consideração os ônibus, pois eles apresentam uma configuração diferente na rede, como mencionado anteriormente, e não se distribuem percentualmente como os outros veículos. Na Tabela 5-17 é apresentado o cálculo da porcentagem dos tipos de veículo que será adotada na distribuição dos veículos no VISSIM.

Tabela 5-17 Percentual de dados de entrada para o VISSIM

VEÍCULOS BRS	VEÍCULOS	TÁXIS BRS	TÁXIS	CAMINHÕES	MOTOS	TOTAL
18	387	194	327	24	8	958
2%	40%	20%	33%	3%	2%	100%

v. Avenida Nossa Senhora de Copacabana com a Rua Prado Junior (Nó número 24)

Este cruzamento se localiza na parte final da rede, próximo à Avenida Princesa Isabel. Igual ao cruzamento anterior, este tem 4 fluxos ou movimentos dos quais os Fluxos 1 e 4 representam a maioria dos fluxos da interseção. A Figura 5-24 apresenta um esquema do cruzamento estudado.

Figura 5-24 Esquemas dos fluxos no cruzamento da Av. Nossa Senhora de Copacabana e a Rua Prado Junior

Nesse cruzamento só foram coletados os Fluxos ou movimentos 1 e 4, pois, como nos outros dois casos, o fluxo está saindo do sistema e não estão sobre o corredor principal no ponto final da simulação, ou seja, estes não vão afetar relevantemente a simulação. Os dados de fluxo coletados e processados são apresentados na Tabela 5-18.

Tabela 5-18 Fluxos horários no período pico de 8:15-9:15 da Av Nossa Senhora de Copacabana com a Rua Prado Junior

FLUXO	PERÍODO DE PICO	ÔNIBUS	VEÍCULOS	TÁXIS	PESADOS	MOTOS	Total
	8:15 - 8:30	62	123	110	2	4	301
	8:30 - 8:45	67	128	182	4	7	388
1	8:45 - 9:00	65	157	162	1	10	395
	9:00 - 9:15	75	147	191	8	6	427
	Subtotal	269	555	645	15	27	1511
	8:15 - 8:30	0	50	37	4	3	94
	8:30 - 8:45	0	48	38	0	3	89
4	8:45 - 9:00	1	41	45	1	4	92
	9:00 - 9:15	0	44	39	2	3	88
	Subtotal	1	183	159	7	13	363
Total	8:15 - 9:15	270	738	804	22	40	1874
Percentual	8:15 - Y:15	14%	39%	43%	1%	2%	100%

No total trafegam por esse ponto 1874 veíc/h sobre o corredor principal estudado, em fluxo contínuo em direção ao centro da cidade. O transporte público é representado por 14 % (270 ônibus) e os veículos e táxis por 39% e 43 % respectivamente.

Nota-se que essa interseção junto com o cruzamento número 4 formam parte do início e do final da rede a ser simulada. Por isso, com esses valores, será possível calibrar e validar o modelo.

vi. Tempos de viagem entre o ponto A e o ponto B

Para determinar os tempos de viagem aproximados do sistema de transporte público, foram fornecidos dados de campo de um estudo de registro da placa de identificação veicular realizado pela CET-Rio, os quais indicam o tempo decorrido dos ônibus entre dois pontos específicos, como se ilustra na Figura 5-25 e na Tabela 5-19.

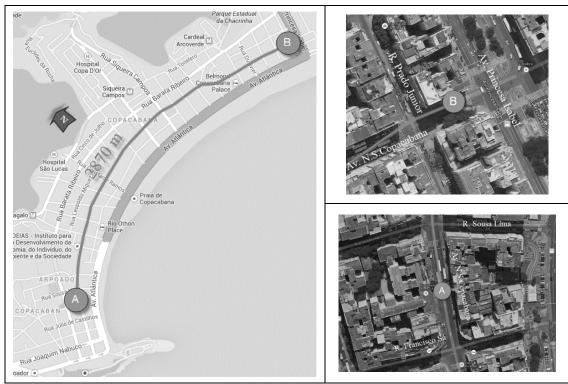


Figura 5-25 Localização pontos de coleta de dados

Tabela 5-19 Tempos de viagem por ônibus na Avenida Nossa Senhora de Copacabana entre Rua Francisco Sá e Avenida Princesa Isabel

DI A CIA	HORÁRIO	HORÁRIO	Tempo de vi	agem A-B
PLACA	PONTO A	PONTO B	(Min)	(Seg.)
42663	7:00:00 a.m.	7:14:00 a.m.	14:00	840
41324	7:10:00 a.m.	7:17:00 a.m.	07:00	420
42633	7:10:00 a.m.	7:20:00 a.m.	10:00	600
27611	7:11:00 a.m.	7:22:00 a.m.	11:00	660
27557	7:13:00 a.m.	7:26:00 a.m.	13:00	780
42597	7:14:00 a.m.	7:23:00 a.m.	09:00	540
27597	7:15:00 a.m.	7:32:00 a.m.	17:00	1020
27541	7:21:00 a.m.	7:37:00 a.m.	16:00	960
42674	7:22:00 a.m.	7:35:00 a.m.	13:00	780
27630	7:24:00 a.m.	7:38:00 a.m.	14:00	840
41332	7:25:00 a.m.	7:40:00 a.m.	15:00	900
27612	7:26:00 a.m.	7:37:00 a.m.	11:00	660
42619	7:28:00 a.m.	7:43:00 a.m.	15:00	900
42556	7:30:00 a.m.	7:44:00 a.m.	14:00	840
41085	7:36:00 a.m.	7:50:00 a.m.	14:00	840
27636	7:40:00 a.m.	7:54:00 a.m.	14:00	840
42621	7:42:00 a.m.	7:59:00 a.m.	17:00	1020
42644	7:43:00 a.m.	7:55:00 a.m.	12:00	720
27580	7:50:00 a.m.	8:00:00 a.m.	10:00	600
27512	7:51:00 a.m.	8:01:00 a.m.	10:00	600
42632	7:53:00 a.m.	8:01:00 a.m.	08:00	480
41018	7:55:00 a.m.	8:02:00 a.m.	07:00	420
27601	7:55:00 a.m.	8:02:00 a.m.	07:00	420
41352	7:57:00 a.m.	8:05:00 a.m.	08:00	480
27561	7:59:00 a.m.	8:09:00 a.m.	10:00	600
42595	8:00:00 a.m.	8:10:00 a.m.	10:00	600
41022	8:02:00 a.m.	8:20:00 a.m.	18:00	1080
27571	8:03:00 a.m.	8:15:00 a.m.	12:00	720
27635	8:10:00 a.m.	8:25:00 a.m.	15:00	900
		Média	12:06	726.21
		Desvio Padrão	03:13	192.66
		Mín	07:00	420
		Máx	18:00	1080

Em média, o tempo de viagem dos ônibus entre os dois pontos citados é de aproximadamente 12 minutos (726,21s). Nesse período está incluído o tempo causado pelos atrasos na rede.

5.2.7 CONSIDERAÇÕES NA CONSTRUÇÃO DO MODELO

A simulação pretende estudar as características dos sistemas de faixas exclusivas focados nos sistemas BRS, pois o sistema tem regras de operação pouco comuns. Foram apresentadas algumas dificuldades na construção e codificação do modelo, além das limitações do *software*, pelo qual se adotaram algumas medidas e supostos que foram levados em consideração durante a elaboração do modelo, garantindo a melhor representação possível da realidade.

A primeira dificuldade encontrada ao construir a rede foi conseguir diferenciar as faixas exclusivas para ônibus das outras. Para essa finalidade, se realizaram restrições de operação aos veículos diferentes ao ônibus por cada faixa, dentro de cada arco da rede, aproveitando que o VISSIM tem essa opção dentro de sua programação. Desse modo, logrou-se segregar os veículos de transporte público dos veículos de transporte privado (Figura 5-26)

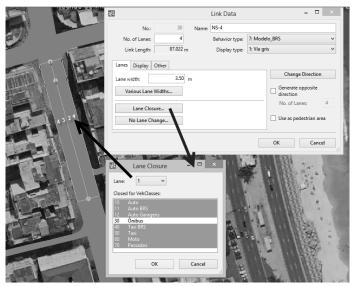


Figura 5-26 Restrição de faixa para veículos não autorizados no VISSIM

Outra dificuldade encontrada foi simular a entrada autorizada dos veículos individuais num quarteirão anterior para realizar o giro à direita e a diferenciação dos táxis que podem entrar na faixa exclusiva dos que não podem.

Em função do alto grau de complexidade dessas manobras, não foi possível instruir o simulador que fizera a operação com as ferramentas disponíveis. Então, se considerou que as faixas exclusivas tinham certa quantidade de veículos individuais e táxis sempre trafegando por elas. Levando em consideração essa hipótese, acrescentaram-se mais dois tipos de

veículos, Veículos BRS e Táxis BRS, com o objetivo de diferenciar entre os que trafegam pelas faixas do BRS e os que não. Desta maneira, foi possível restringir aos veículos particulares, táxis desocupados, motos e caminhões de ingressar, ao contrário dos novos tipos de veículo, o que foi calculado a partir das coletas de campo, como se apresenta Tabela 5-20.

Tabela 5-20 Distribuições dos tipos de veículo no simulador

VEÍCULOS BRS	VEÍCULOS	TÁXIS BRS	TÁXIS	CAMINHÕES	MOTOS
2%	40%	20%	33%	3%	2%

Quanto ao transporte público, a maior dificuldade que se deu foi simular a parada dos ônibus nos pontos de parada indicados para cada linha (BRS1, BRS2 e BRS3), inserindo os fluxos totais distribuídos percentualmente na rede (ônibus, veículos, veículos BRS, Táxis BRS, táxis, caminhões e motos). Embora os ônibus que trafegavam na faixa exclusiva não realizavam paradas para fazer subida e descida de passageiros nos pontos de parada, eles operavam em um fluxo contínuo, como os veículos do tráfego geral. Por isso, foi necessária a criação de uma rede de transporte público independente, incluindo o trajeto de cada linha de ônibus que opera no setor e utilizando as ferramentas do simulador correspondentes a linhas e pontos de parada. Contudo, foram utilizados os dados levantados em campo referentes às linhas de ônibus e pontos de parada, conforme foi citado nas Tabela 5-10 e Tabela 5-11.

Para a representação dos veículos que entram na rede quando saem das garagens diretamente na faixa exclusiva, foi necessário criar um tipo de veículo novo chamado "veículo garagens", que representam o fluxo que é constante na rede em todos os cenários.

5.2.8 PROCESSO DE CALIBRAÇÃO E VALIDAÇÃO

Para realizar o processo de calibração do modelo adotado para a simulação, foram levados em consideração os parâmetros encontrados e recomendados na revisão bibliográfica, pois essa pesquisa não tem como objetivo central a calibração de um modelo de microssimulação para sistemas preferenciais de ônibus de forma rigorosa, mas sim a comparação de cenários propostos a partir de um modelo construído e validado. Foram adotados alguns parâmetros do simulador recomendados no Capítulo 4 e foram testados múltiplas vezes até obter o cenário mais próximo à realidade.

No modelo, contudo, foram utilizados os parâmetros de calibração citados no trabalho de (JIMENEZ, 2011), correspondentes ao número de veículos observados na frente do motorista, na mudança de faixa, no comportamento lateral e no controle semafórico.

Continuando com o processo de validação do modelo, foram considerados dois tipos de medidas observadas em campo para a respectiva comparação com o simulado, de acordo com as metodologias citadas no capítulo anterior. Essas medidas são os volumes em unidade carro passeio (UCP) das interseções onde se obtiveram os dados de fluxo veicular e os tempos de viagem dos ônibus em um trajeto dado.

i. Validação por volumes veiculares horários

Para a validação do modelo, foi utilizada a comparação dos volumes observados em campo e os obtidos mediante a simulação, levando em consideração o teste estatístico GEH, que foi calculado de acordo com a formulação matemática citada na metodologia. Na Tabela 5-21 é apresentado o resumo desse processo.

Tabela 5-21 Avaliação do modelo teste GEH

Nó	Ponto de medição	OBSERVADOS		SIM	ULADOS		%		
NO	ronto de medição	Total	Total Veículo UCP	Total Total Veículo UCP			GEH		
4	3+4	1198	1471	1205	1486.69	0.40	ACEITO	14%	
4	1+2	512	593	546	643.63	2.04	ACEITO	14%	
15	3+4	1753	2113	1808	2201.41	4.66	ACEITO	14%	
15	1+2	529	592	503	553.98	1.58	ACEITO	14%	
19	1	2457	3075	2145	2500.3	10.53	REJEITADO	14%	
19	7	176	177	163	163.24	1.08	ACEITO	14%	
23	1+3	1874	2201	1889	2224.9	0.51	ACEITO	14%	

Das sete (7) medidas comparadas com essa estatística, 86% foram aceitas e 14% rejeitadas, ficando o modelo validado conforme o critério de aceitação que se apresenta na Tabela 5-22.

Tabela 5-22 Critério de aceitação fr avaliação e calibração

	The eth E 22 etherto de decinique f. d'unidique e editeração									
Estatístico	Total Casos analisados	Número de vezes que GEH<5	Número de vezes que GEH>5	% de casos que é aceito	Critério de aceitação da calibração					
GEH static	7	6	1	86%	GEH<5 no 85%					

Fonte: Wisconsin DOT, District 2. Junho de 2002. Critério de parâmetros de aceitação para calibração e validação de modelos.

Para validar esse modelo mediante o desempenho dos tempos de viagem, foi levada em consideração a informação de campo fornecida pela CET-Rio, correspondente aos tempos de

viagem apresentados na Tabela 5-19. Esses foram comparados com dados simulados para obter a aceitação do modelo, levando em consideração o teste estatístico de análises de variâncias ANOVA-fator único, citado na Seção 4.2.3.

Para este caso, foram executadas 20 replicações do modelo no simulador, de onde foram obtidos dados de tempos de viagens para o ônibus entre o ponto A e B, conforme a Figura 5-24. Com esses dados e informações observadas em campo para o mesmo local e veículo, realizou-se o teste com um nível de confiança de 95%.

A Tabela 5-23 apresenta o resultado da análise estatística de variância ANOVA-fator único entre as amostras. O detalhe desse processo é apresentado no Apêndice A.

Tabela 5-23 Teste ANOVA para tempos de viagem médios

Amostra	Leituras	uras Tempo de viagem médio (S)		P valor	F crítico	F Calculado
Simulado	20	781.73	5%	0.207	4.047	1.640
Real	29	726.21				

Nota-se que o P valor é maior que o nível de significância e o parâmetro é menor que seu valor crítico, onde a hipótese nula não é rejeitada e o modelo é validado satisfatoriamente com essa metodologia.

ii. Sensibilidade dos dados e aceitação do cenário-base (Cenário 4)

Depois do processo de calibração do modelo, se fez a simulação do cenário atual, que corresponde ao Cenário 4. Dessa simulação inicial se obtiveram vários indicadores de desempenho da rede, como o número de veículos, o tempo de viagem, a distância e os atrasos. O número de veículos refere-se à quantidade total de veículos que passa pela rede no período da simulação; a distância se expressa em quilômetros e corresponde à soma dos trajetos de cada veículo que realizou na rede desde a sua entrada até a sua saída. O tempo de viagem é similar à distância e trata-se da somatória dos de tempos de viagem de cada veículo que passa pela rede que é se expressa em segundos.

Por outro lado, foram obtidos dados da velocidade média de operação, a qual é calculada a partir da distância percorrida na rede sobre o tempo desse percurso. Nota-se que a velocidade média total não é calculada diretamente dos valores globais totais, pois primeiro é calculada para cada tipo de veículo na rede e depois se calcula uma média ponderada levando em consideração a quantidade de veículos de cada tipo veicular.

Despois dessa primeira simulação nomeada como exploratória, foi realizada uma amostra piloto de 10 replicações do modelo atual com diferente semente, com o objetivo de estimar o nível de confiança da média e a confiabilidade dos dados com o número de replicações adotado, com base no teste estadístico *t student*, levando em consideração a seguinte formulação:

$$h = t_{(n-1,1-\alpha)} \frac{S}{\sqrt{n}} \tag{5}$$

$$S^2 = \frac{\sum X_i^2 - n\bar{X}^2}{n-1} \tag{6}$$

Onde:

- h = semi-intervalo de confiança para n replicações;
- n = número de replicações piloto;
- S = variância para replicações;

 $t_{(n-1,1-\alpha)}$ = valor crítico da distribuição *t-student* com nível de confiança 1- α , e n graus de liberdade;

 α = Erro admitido;

• $(1 - \alpha) = \text{nível de confiança}$.

O intervalo de confiança com o erro adotado corresponde por seu limite inferior (*IC* -) ao valor médio do indicador selecionado menos o semi-intervalo calculado (h) e por seu limite superior (*IC*+) ao valor médio mais o semi-intervalo calculado (h).

Intervalo de Confiança (IC-, IC+):
$$IC-=\bar{X}-h$$
 e $IC+=\bar{X}+h$ (7)

Para que o número de replicações seja aceito, o valor do semi-intervalo (h) terá que ser menor que o máximo erro admitido. Isso significa que a média deve estar no intervalo de confiança estimado pela formulação anterior, caso contrário deve se encontrar um número de replicações ótimo que aceite o nível de confiança adotado. Para isso se aplica a seguinte equação.

$$n^* = \left[n \left(\frac{h}{h^*} \right)^2 \right] \tag{8}$$

Onde

- $n = \acute{e}$ o número de replicações ótimo para um intervalo de confiança selecionado;
- $n = \acute{e}$ o número de replicações piloto o inicial que foi aceito segundo o teste;
- $h = \acute{e}$ o semi-intervalo calculado, maior que o erro admitido;
- h* = é o semi-intervalo a ser encontrado que para o caso em que é menor ou igual ao o
 erro admitido em valor numérico e não percentual, no que diz respeito ao valor da
 média do indicador escolhido.

Para o estudo de caso, foi realizado o teste selecionando a velocidade de operação como medida comparativa com um erro admissível α =5% no cenário atual. Na Tabela 5-24 apresenta-se em resumo o cálculo estatístico citado para a velocidade média e outros indicadores obtidos na simulação.

Tabela 5-24 Teste estatístico cenário atual (Cenário 4)

Indicador	Valores	Desvio padrão	n	Erro (a)	t	h	IC -	IC+
Número de veículos	8021.38	82.34	8	5%	2.365	0.86%	7952.54	8090.21
Tempo de viagem (h)	517.49	7.60	8	5%	2.365	1.23%	511.13	523.85
Distância (km)	8364.75	81.96	8	5%	2.365	0.82%	8296.23	8433.28
Atraso (h)	249.42	5.30	8	5%	2.365	1.78%	244.99	253.85
Atraso médio por veículo (s)	111.94	1.82	8	5%	2.365	1.36%	110.42	113.46
Velocidade média (km/h)	16.17	0.11	8	5%	2.365	0.57%	16.07	16.26

Desta tabela pode-se observar que o valor do semi-intervalo para a velocidade média é igual a 0.57% (0,095), que é menor que o erro aceito α=5% (0.801), portanto, os valores da média estão dentro do intervalo de confiança, levando a uma distribuição normal, com um nível de confiança de 95 %. A média do indicador adotado é aceito como valor representativo da simulação com as 8 replicações do modelo. Sendo assim, não é necessário calcular um novo número de replicações.

Esses procedimentos foram realizados para cada cenário simulado e são apresentados no Apêndice B dessa pesquisa, assim como os dados de cada indicador por tipo de veículo.

A Tabela 5-25 apresenta um resumo do teste aplicado aos diferentes cenários onde se pode verificar que o valor do semi-intrevalo (h) é menor que o erro amissível de 5% em todos os casos.

Tabela 5-25 Resumo do teste de significância da velocidade média de operação para cada cenário

Cenário	Velocidade média (km/h)	Desvio padrão	Replicações (n)	Erro (α)	t	h	IC -	IC+
1	13.76	0.43	10	5%	2.26	2.26%	13.45	14.07
2	13.96	0.61	10	5%	2.26	3.12%	13.52	14.39
3	15.68	0.48	10	5%	2.26	2.19%	15.34	16.03
4	16.17	0.11	8	5%	2.36	0.57%	16.07	16.26
5	15.88	0.53	9	5%	2.31	2.55%	15.47	16.28
6	14.35	0.59	19	5%	2.10	1.98%	14.07	14.64

Para o Cenário 6, o número de replicações teve que ser recalculado de 10 para 19, pois ele não atendeu ao valor mínimo de confiança definido inicialmente.

5.2.9 ANÁLISES DE RESULTADOS DOS DIFERENTES CENÁRIOS

Uma vez realizada a construção do modelo, que se refere â conformação e codificação da rede, assim como o processamento da informação, calibração e validação do cenário atual, foi dado seguimento à análise dos dados obtidos nos diferentes cenários com a finalidade de comparar cada medida de desempenho encontrada.

Em resumo se apresentam na Tabela 5-26 os indicadores encontrados para cada cenário da rede.

Tabela 5-26 Resumo de indicadores de desempenho globais da rede por cenário.

Indicador	CENÁRIO 1	CENÁRIO 2	CENÁRIO 3	CENÁRIO 4	CENÁRIO 5	CENÁRIO 6
N° Faixas exclusivas	1	1	1	2	2	2
Táxis com passageiro na faixa (Taxis BRS)	Sim	Sim	Não	Sim	Sim	Não
Veículos conversão à direita na faixa (veículos BRS)	Sim	Não	Não	Sim	Não	Não
N° de veículos	7765.00	7800.90	7947.50	8021.38	7909.56	7921.16
Tempo de viagem (h)	531.43	530.90	505.44	517.49	518.06	570.71
Distância (km)	7309.66	7409.93	7926.27	8364.75	8230.51	8177.19
Atraso (h)	298.86	295.04	251.99	249.42	254.18	307.80
Atraso médio por veículo (s)	138.70	136.48	114.25	111.94	115.89	139.77
Velocidade média (km/h)	13.76	13.96	15.68	16.17	15.88	14.35

Dos resultados obtidos, pode-se apreciar a variação dos diferentes indicadores ao trocar de cenário. Na Figura 5-27, foram apresentados os dados compilados percentualmente a partir do valor máximo de cada indicador com a finalidade de apreciar visualmente as diferenças entre eles.

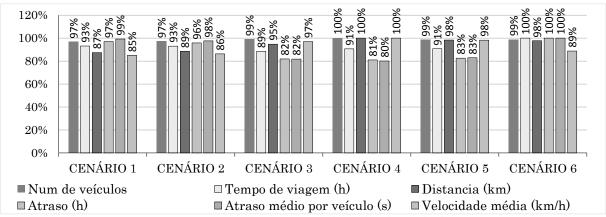


Figura 5-27 Gráfico percentual comparativo dos indicadores obtidos por cenário.

Em resumo, a quantidade de veículos que ingressa na rede é homogênea em todos os cenários, assim como a distância e suas variações não são representativas. No que se refere aos tempos de viagem, esse valor começa a variar em todos os cenários, apresentando seu máximo valor no Cenário 6, ocasionado pelo fluxo de táxis com passageiros, o qual passa das faixas exclusivas para as duas faixas da esquerda, assim como os veículos que entravam na faixa para realizar o giro à direita (veículos BRS), reduzindo a capacidade da via e formando pelotões e filas que aumentam os tempos de viagem. Em consequência, a velocidade média de operação e os atrasos médios por veículo alcançam valores críticos. No entanto, não significa que o parâmetro de operação da faixa exclusiva seja crítico, pois os valores anteriormente

apresentados são valores médios em que se misturam todos os tipos de veículos que operam em todas as faixas.

Os Cenários 3 e 4 apresentam valores equilibrados na rede, dado que os veículos têm valores operacionais equitativos e se distribuem de maneira equilibrada nas faixas da rede, dando prioridade ao ônibus.

Na Figura 5-28, é apresentada a distribuição percentual de cada tipo de veículo na rede em cada cenário, onde se pode observar que os valores são similares em cada cenário, com exceção aos Cenários 3 e 6, nos quais os veículos que trafegavam na faixa da exclusiva (Táxis BRS e Veículos BRS) foram alocados ao fluxo das faixas não exclusivas. Pode-se dizer que esses tipos de veículos desaparecem da faixa exclusiva e são acrescentados ao tráfego geral que circula nas faixas da esquerda.

Com a finalidade de facilitar o entendimento dos dados, reagruparam-se as análises em três grupos: o primeiro está representado pelos veículos, táxis que circulam fora da faixa segregada, assim como as motos e os caminhões, nomeado como TRÁFEGO GERAL. No segundo grupo, apresentaram-se os valores médios para os veículos de pequeno porte que circulam pela faixa preferencial (auto BRS, táxi BRS e autos garagens), nomeando essa categoria como AUTOS NA FAIXA BRS. Por fim, no terceiro grupo, os ônibus foram nomeados como ÔNIBUS BRS.

A Figura 5-29 apresenta os tempos de viagem de cada grupo nos diferentes cenários modelados. Pode-se inferir que nos cenários com uma (1) faixa exclusiva o ÔNIBUS BRS apresenta maiores tempos de viagem que com duas (2) faixas. Para os outros tipos de veículos houve melhora, pois esses veículos têm maior espaço para trafegar (3 faixas). Outro aspecto relevante que acrescenta os tempos de viagens no BRS nos cenários com uma faixa exclusiva é a falta de recuos ou baias nos pontos de parada dos ônibus, elemento que não foi considerado dentro dos limites da pesquisa.

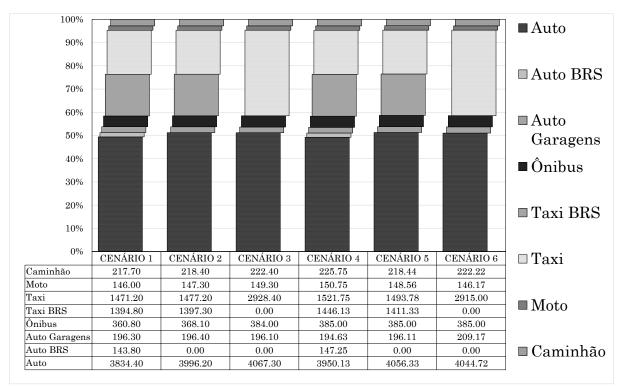


Figura 5-28 Distribuição veicular por cada cenário estudado

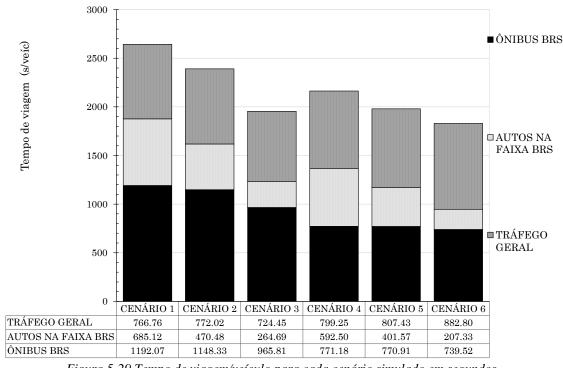


Figura 5-29 Tempo de viagem/veículo para cada cenário simulado em segundos

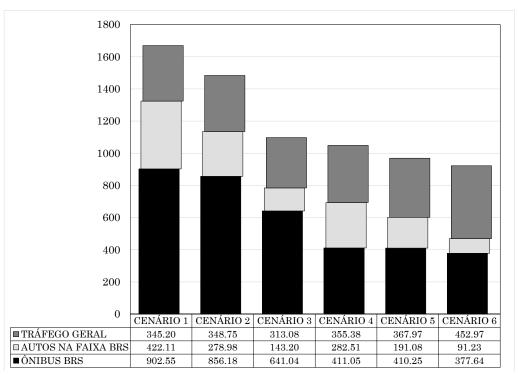


Figura 5-30 Atraso médio por veículo em segundos

Outro parâmetro obtido na pesquisa foram os atrasos médios por veículo em segundos, os quais se apresentam na Figura 5-30. Dessa figura, pode-se deduzir que, em relação com os atrasos médios totais de cada cenário, o menor porcentual de atrasos para o modo ônibus se dá nos cenários com duas faixas exclusivas (Cenários 4, 5 e 6). Isso significa que o ônibus tem maior fluidez e velocidade nesses cenários na medida em que a pista fica livre de interferência. No entanto, os atrasos aumentam com os outros tipos de veículos, ficando congestionadas as duas pistas da direita.

Quando se analisou o número de veículos que entravam na rede, perceberam-se valores excessivos nos resultados dos volumes veiculares da simulação em comparação com os volumes esperados, que para o caso referem-se aos volumes veiculares da interseção número quatro (4) apresentados na Tabela 5-17. Embora a validação do modelo tenha sido satisfatória, somente foram validadas 5 interseções das 28 existentes, com um comprimento longo entre pontos, pelo qual existe grande número de veículos na Avenida Nossa Senhora de Copacabana, entrando e saindo desse trecho pelas vias transversais, acrescentando o número de veículos que passa pela rede, sem afetar os valores de validação nos pontos de controle, com exceção do ônibus, que tem um trajeto definido para cada linha de transporte.

Esse incremento excessivo, principalmente dos veículos particulares e dos táxis, impacta nos valores médios do tempo de viagem e nos atrasos da Avenida Nossa Senhora de Copacabana, pois alguns veículos não trafegam por essa avenida utilizando as ruas transversais. O que explica a pouca diferença entre cenários nos tempos de viagens e nos atrasos. Esses valores se dão em toda a rede e não somente no corredor principal. No entanto, é possível apreciar os impactos ao realizar mudanças em cada cenário.

É importante ressaltar que o ônibus não apresenta esse problema, pois ele tem trajetos definidos na avenida estudada, portanto, esse tipo de veículo não é afetado. A Tabela 5-27 apresenta a comparação dos valores simulados com os valores esperados, coletados em campo, correspondentes ao cenário atual, nomeado Cenário 4.

Tabela 5-27 Considerações de erro na simulação

TIPO DE VEICULO	CENÁRIO 4 (SIMULADOR)	APROXIMADO ESPERADO CENÁRIO 4
Auto	3950	387
Auto BRS	147	18
Táxi BRS	1446	387
Táxi	1522	194
Ônibus	385	327

A Figura 5-31 e a Figura 5-32 apresentam a velocidade máxima de operação da rede. Pode-se observar nessas figuras que a velocidade média do ônibus é estável entre os Cenários 4 e 5, com variações mínimas (13,20 km/h, 13,23 km/h). Esperava-se um aumento significativo na velocidade operacional do ônibus para o Cenário 6, no entanto, a mudança foi baixa perto dos 5% (13,83 km/h). Nos cenários onde o BRS trafega por uma faixa exclusiva (Cenários 1, 2 e 3), é confirmada uma diminuição significativa de seu desempenho, apresentando velocidades de operação menores.

Quanto aos veículos que trafegam pelas faixas exclusivas (autos na faixa BRS), estes apresentam velocidades que variam nos diferentes cenários estudados, apresentando seu menor valor no Cenário 1 (11,66 km/h) e seu maior desempenho no Cenário 6 (17,84 km/h).

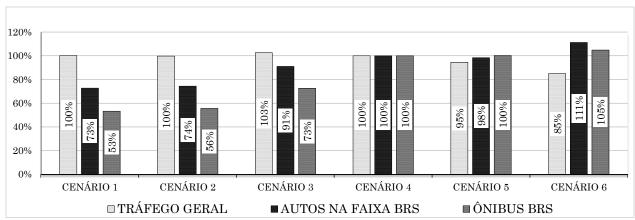


Figura 5-31 Percentuais de velocidade média de operação.

O fluxo do tráfego geral apresenta valores médios de velocidade estável durante os 4 primeiros cenários, variando levemente entre eles. Já nos Cenários 5 e 6 sua velocidade é baixa notavelmente devido aos veículos que circulavam pela faixa do BRS. Diferentemente do ônibus, são alocadas gradualmente as duas faixas do tráfego geral, gerando um aumento no tráfego e consequentemente nos tempos de viagem, refletindo em velocidades menores.

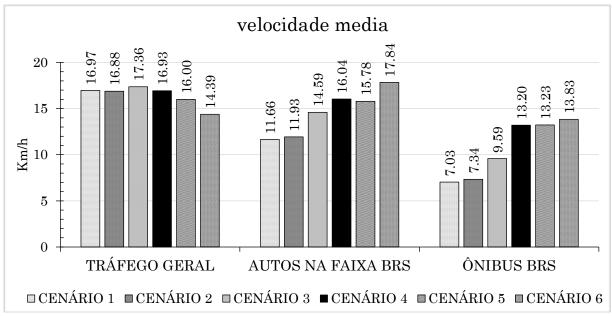


Figura 5-32 Velocidade média de operação.

Com o objetivo de verificar o desempenho em fluxo livre da faixa do BRS, foi realizada uma simulação considerando que o ônibus é o único veículo que circula pelas faixas exclusivas, além de não ter veículos trafegando nas outras duas faixas, com o objetivo de ver o maior desempenho desse veículo na rede a fim de poder compará-lo com os valores encontrados nos diferentes cenários, como se apresenta na Figura 5-33.

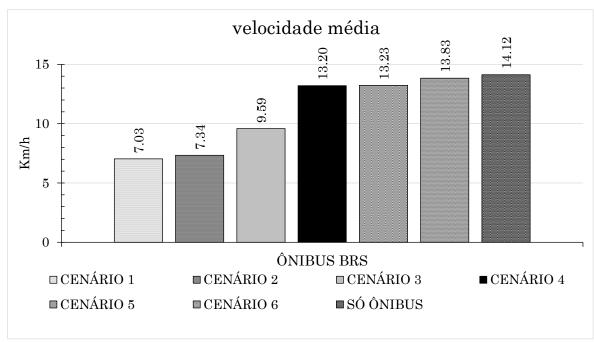


Figura 5-33 Velocidade de operação somente ônibus BRS, com cenário em fluxo livre

Pode-se observar que a máxima velocidade em fluxo livre que o ônibus BRS pode alcançar é aproximadamente 14,12 km/h, da qual se pode dizer que os cenários com duas faixas têm um desempenho bom devido aos estão perto desse valor. O Cenário 6 tem a maior velocidade 13,88 km/h. Embora ela esteja sem interferência nas faixas exclusivas, não chega ao valor máximo, o que pode ocorrer devido a interferências leves dos outros veículos nos cruzamentos.

6 CONCLUSÕES E RECOMENDAÇÕES

Com base nos resultados alcançados durante a pesquisa, são apresentadas as principais conclusões e recomendações do trabalho, que se encontra dividido em duas partes. Na primeira foi estudada a relação do BRS com os diferentes sistemas de transporte, focado em comparações com o índice de complexidade, capacidade e classificação descrita por Vuchic (1981) em seu direito de passagem. Na segunda parte, foram estudados os diferentes cenários do BRS voltados para o caso da Avenida Nossa Senhora de Copacabana, utilizando a simulação como instrumento de análise.

Levando em consideração a primeira parte da pesquisa, conclui-se que o BRS torna-se uma alternativa no transporte exclusivo para ônibus que aplica os conceitos conhecidos de faixas exclusivas com um componente tecnológico forte e uma reorganização adequada da frota e de sua infraestrutura, mostrando-se como um sistema em transição entre o sistema tradicional e os sistemas de transporte BRT, característica pela qual vai além dos sistemas de faixas exclusivas convencionais.

Também se comprovou que a relação existente entre os diferentes sistemas de transporte, incluído o BRS, utilizando como parâmetros comparativos o índice de complexidade desenvolvido nesta pesquisa e a capacidade máxima de passageiros, não é de todo linear. A melhor curva de tendência, segundo os valores estimados produto do trabalho, foi a potencial, mostrando um crescimento de seu índice de complexidade ao mesmo tempo em que aumenta sua capacidade.

Na segunda parte deste trabalho, evidenciou-se a variedade de situações infraestruturais e operacionais dos sistemas de ônibus, fato que os BRS trouxeram à tona, sinalizando a pouca utilidade de estarem reunidos em uma única categoria, a tipo C.

Constata-se a necessidade de subdivisão da categoria C em subcategorias (p.ex. C_1 a C_n), considerando o tipo de interferência advinda de outros veículos, o tipo de infraestrutura disponível e as regras de operação, assim como a presença ou não de algumas medidas de prioridade adicionais e as técnicas de análises desses sistemas utilizando a simulação.

O processo de simulação para sistemas de transporte BRS mostra-se como ferramenta importante para os planejadores de tráfego e de transporte, permitindo escolher os cenários mais eficientes para cada caso, com um maior nível de confiança.

Desta metodologia reafirma-se que os procedimentos de coleta de dados, calibração e validação do modelo são cruciais para uma correta simulação e devem ser realizados com o maior detalhe possível, pois o êxito dessa etapa assegura os bons resultados das análises. O processo inicial de validação do modelo foi executado considerando os volumes nas interseções e as velocidades dos ônibus coletadas em campo. No entanto, existem outras variáveis que se podem utilizar para esse fim, como os comprimentos das filas e a velocidade média de operação dos diferentes tipos de veículos, as quais não foram levadas em consideração nesta pesquisa. A inclusão dessas variáveis pode ajudar na otimização do modelo.

Na pesquisa, o processo de representação do comportamento dos veículos em face da presença de sistemas de transporte BRS apresenta ainda algumas dificuldades importantes, sobretudo na tendência dos automóveis em permanecer ou sair da faixa de BRS, pois a coleta e a validação dos dados só foram realizadas em cinco (5) das 28 interseções devido à falta de recursos para realizar uma coleta de dados mais ampliada. No entanto, os procedimentos de validação em cada ponto de controle foram satisfatórios, encontrando uma quantidade similar de dados simulados contrastados com os dados coletados em campo, como foi descrito.

De outro lado, devido à grande diferença de distância entre cada ponto de controle, na simulação os veículos entravam e saiam nesses trechos sem seguir um trajeto completo e definido sobre toda a Avenida Nossa Senhora de Copacabana, com exceção dos ônibus, o que mostrou que o número de veículos totais da rede aumentara de forma desproporcionada.

De forma geral, o BRS mudou a forma de implantação dos sistemas exclusivos para ônibus, gerando uma nova metodologia de implantação, assim como um esquema de interação com infraestruturas, sinalização e tecnologias de transporte ITS, elementos necessários para obter bons resultados na operação desses sistemas de transportes.

Ressaltam-se alguns elementos críticos na implantação de sistemas tipo BRS, tais como a correta implantação dos pontos de parada, o conhecimento das regras de operação por parte dos usuários, o método de fiscalização e a escolha do nível de interferência com os outros

veículos da rede. A variação desses atributos pode alterar o funcionamento satisfatório do sistema.

Por outro lado, o aumento na permissão de entrada e saída de outros tipos de veículos na faixa exclusiva, como é o caso dos táxis com passageiros e dos veículos que realizam giro à direita, pode interferir no sistema exclusivo de ônibus (BRS), gerando um alto impacto, o que pode trazer como consequência a nulidade dos benefícios desses sistemas. Por isso, recomenda-se estudar detalhadamente essas práticas, sem deixar de considerar que o ônibus é objeto da prioridade e não o veículo individual.

Quanto aos resultados obtidos na comparação dos dados nos cenários analisados mediante a simulação, determinou-se que os cenários com uma faixa exclusiva para ônibus (Cenários 1, 2 e 3) sem recuo ou baia para os pontos de parada de ônibus apresentam indicadores de desempenho desfavoráveis para o ônibus e favoráveis para o tráfego geral da rede. Neste caso, são dadas as maiores velocidades para esses tipos de veículos (táxis, veículo, motos e caminhões), pois a capacidade da via aumenta de duas faixas para três. O panorama para os ônibus do BRS é contrário, seus indicadores são os mais baixos, em comparação com os outros cenários, chegando à velocidade de operação de até 7.03 km/h, valor bem abaixo do desejado. Isso é causado pela falta de ultrapassagem nos pontos, o qual é fundamental para a correta operação de todo o sistema. Outro fator que contribui para esse baixo desempenho nesses cenários é a interferência dos táxis e dos demais veículos permitidos na faixa exclusiva, os quais geram um alto grau de congestionamento, pois só há uma faixa para trafegar.

Por outro lado, nos Cenários 4, 5 e 6 pode-se observar um incremento favorável nos indicadores de desempenho do ônibus na medida em que são retirados os veículos autorizados das faixas exclusivas. Entre os Cenários 4 e 5, embora os indicadores tenham melhorado para o ônibus, estes foram em menores quantidades, o que se deve à baixa quantidade de veículos que foram realocados nas duas faixas da direita (veículos com giro à direita). Nesse cenário, o tráfego geral permanece estável, se comparado com o Cenário 4, sem diferenças relevantes.

Passando ao Cenário 6, originam-se mudanças desfavoráveis amplamente perceptíveis para o trafego geral da rede devido à elevada quantidade de veículos que saem da faixa exclusiva e são acrescentados à corrente veicular das duas faixas da direita. Quanto ao fluxo de ônibus, seus indicadores são favoráveis, mas, em comparação com os outros cenários, a diferença não é representativa. Contudo, pode-se dizer que nesse cenário o fluxo do BRS não sofre maiores

complicações, sua velocidade de operação fica perto dos 14 km/hr e os atrasos e o tempo de viagem são baixos.

Em resumo, a implantação dos Cenários 1, 2, 3 e 6 não são favoráveis para um ótimo desempenho geral da rede do BRS. Nos Cenários 4 e 5 se aprecia um nível equilibrado dos diferentes indicadores de desempenho, tanto para os ônibus como para os veículos do tráfego geral, que são indicados como cenários ótimos para a implantação desse tipo de sistemas. Por outro lado, a introdução de uma segunda faixa para uso dos ônibus no BRS melhora muito a velocidade desses veículos. No entanto, a presença de automóveis e de táxis nas faixas exclusivas para ônibus influencia no desempenho dos sistemas tipo BRS, os quais normalmente são utilizados em áreas de alta densidade, exigindo, portanto, acesso às garagens e autorização para que alguns tipos de automóveis e táxis usem essas faixas. Por isso, a inclusão e a autorização desses tipos de veículos na faixa exclusiva devem ser muito cautelosas para não reduzir a eficiência do serviço.

Recomenda-se fortemente coletar informação em maior quantidade de pontos da rede para dar maior confiabilidade ao modelo, simular variações nos volumes de ônibus para cada um dos cenários e examinar os impactos no desempenho, assim como analisar o comportamento do tráfego com a variação incremental da quantidade de automóveis e de táxis que circulam nas faixas de BRS e variar a quantidade de veículos que saem e entram nas garagens e seu impacto no comportamento do sistema.

Quanto a trabalhos futuros que podem ser executados seguindo a pesquisa deste tema e levando em consideração os resultados desta pesquisa, propõe-se:

- Avaliar o desempenho dos sistemas BRS, levando em consideração a demanda de passageiros em cada ponto de parada;
- Realizar o processo de calibração em detalhe dos parâmetros psicofísicos dos
 motoristas para o algoritmo *car-following*, utilizado por VISSIM, em vias urbanas
 brasileiras para sistemas de transporte exclusivo tipo BRS, o qual não é bem explorado
 na literatura;
- Analisar cenários do BRS com a inclusão de sistema de prioridade no semáforo, os quais podem melhorar seu desempenho.

REFERÊNCIAS BIBLIOGRÁFICAS

- AGRAWAL, A., GOLDMAN, T., & HANNAFORD, N. (2012). Shared-Use Bus Priority

 Lanes on City Streets: Case Studies in Design and Management. Relatorio 11-10, Mineta

 Transportation Institute, New Jersey, Washington.
- ALARCÓN, V. Z. (2010). Uso de Herramientas de Microsimulación para la Definición de Estrategias de Control de Tránsito para la Ciudad de Santiago. Tese de M.Sc, Universidad de Chile, Santiago de Chile, Chile. Disponível em: http://ftp.ing-mat.udec.cl/pub/ing-mat/asignaturas/521218/pautas/pauta_eval2.ps. Acesso em: 21 Janeiro de 2012.
- ALMONACID, O. M. (2007). Simulación digital de tráfico para intersecciones señalizadas por semáforo, bajo ambiente tridimensional. Tese de graduação, Engenharia Civil em Informática, Universidad del Bío-Bío, Concepción, Chile.
- ARAÚJO, D. R. C. DE. (2003). Comparação das Simulações de Tráfego dos Modelos SATURN e DRACULA. Dissertação de M.Sc, PPGEP/UFRGS, Universidade Federal do Rio Grande do Sul, RG, Brasil.

 Disponível em: http://www.lume.ufrgs.br/handle/10183/4162>. Aceso em: 16 Fevereiro de 2012.
- Ayala, R. L. (2013). *Procedimento para identificação dos principais parâmetros dos microssimuladores a serem considerados no processo de calibração*. Dissertação de M.Sc, ENC/FT/UnB, Universidade de Brasília, Brasil Disponível em: http://repositorio.unb.br/handle/10482/13892. Acesso em: 16 Fevereiro de 2013.
- BARTHOLOMEU, P. (2011). BRS está na passarela. Negócios Em Transporte Ano 9, No 95.
- CAL & MAYOR. (2005). Manual de planeación y diseño para la administración del tránsito y el transporte. Bogotá Colômbia.
- DETR DEPARTMENT OF THE ENVIRONMENT TRANSPORT AND THE REGIONS.

 (2001). KEEPING BUSES MOVING: A Guide to Traffic Management to Assist Buses in

- *Urban Areas*. (pp. 11–21), London. Disponível em: http://trid.trb.org/view.aspx?id=384163>. Acesso em 18 setembro de 2012.
- DOWLING, R. (2007). *Traffic Analysis Toolbox Volume VI: Definition, Interpretation, and Calculation of Traffic Analysis Tools Measures of Effectiveness*. Washington, DC. Disponível em: http://trid.trb.org/view.aspx?id=923861>. Acesso em 12 Junho de 2013.
- DOWLING, R., SKABARDONIS, A., & ALEXIADIS, V. (2004). *Traffic analysis toolbox volume III: Guidelines for applying traffic microsimulation modeling software, III.*Washington, DC. Disponível em: http://trid.trb.org/view.aspx?id=794930>. Acesso em 12 Junho de 2013.
- FELLENDORF, M., & VORTISCH, P. (2010). *Microscopic Traffic Flow Simulator VISSIM*.

 J. Barceló, Ed, Vol. 145, pp. 63–94). New York, NY
- FERRAZ, A. C. PIMTO, & TORRES, I. (2004). *Transporte público urbano*. São Paulo, Brasil.
- FETRANSPOR. (2011a). 2^a Avaliação do trânsito em Copacabana. Rio de Janeiro, Brasil. Disponível em: http://www.fetranspor.com.br. Acesso em 24 Julho de 2012.
- FETRANSPOR. (2011b). *BRS Copacabana*. Disponível em: http://www.fetranspor.com.br. Acesso em 24 Julho de 2012.
- FETRANSPOR. (2011c). *BRS de Copacabana chega à Barata Ribeiro e Raul Pompeia*. *Revista Ônibus, Ano XI,No 64* (pp. 18–20). Rio de Janeiro, Brasil. Disponível em: http://www.fetranspor.com.br. Acesso em 28 Julho de 2012.
- FETRANSPOR. (2012). Apresentacao BRS Bus Rapid Service, Fetransport 2012 e Fetransrio. Rio de Janeiro.
- FETRANSPOR. (2013). Manual de Implementação BRS, Rio de Janeiro, Brasil.
- GARDNER, G. (1991). The performance of busway transit in developing cities Department of Transport. Disponível em:

- http:<//www.transportinks.org/transport_links/filearea/documentstore/249_RR329[1].pdf >. Acesso em 28 Julho de 2012.
- GASULLA, M. M. (2011). Estudio y mejora de la capacidad y funcionalidad de glorietas con flujos de tráfico descompensados mediante microsimulación de tráfico. CÀTEDRA ABERTIS de Gestión de Infraestructuras del Transporte, Universitade Politècnica de Catalunya, Barcelona, España.
- GRAY, G. E., & HOEL, L. A. (1979). *Public transportation: planning, operation, and management (pp. 205–211)*. New Jersey.
- IBGE / INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. (2010). *População residente no brasil e Rio de Janeiro*. Anuário Estatístico do Brasil 1997 e Censo Demográfico 2000 e 2010.
- JIMENEZ, M. M. (2011). Sistema adaptativo de control y optimización del tráfico de un corredor vial semaforizado. aplicación a la ciudad de medellín. Dyna. Dissertação de M.Sc, Facultade de Engenheira, Universidad Nacional de Colômbia Sede Medellín. Medellin, Antioquia. Disponível em: http://cat.inist.fr/?aModele=afficheN&cpsidt=24705048. Acesso em: 14 Julho 2013.
- JUNIOR, M. DE F., & ARAUJO, A. M. DE. (2010). Considerações a respeito do sistema de monotrilho: características técnicas, vantagens & desvantagens e projetos em andamento, pp.1–9.
- KITTELSON, & ASSOCIATES, I. N. C. (2003). Part 4 bus transit capacity. in (trb-transportation research board) (ed.), transit capacity and quality of service manual (2 edi., pp. 19–34 part 4). Washington, D.C.: Transit cooperative research program.

 Oisponível em: http://www.worldtransitresearch.info/research/4941>. Acesso em: 01 Agosto 2013.
- LERNER, J., & NTU. (2009). Avaliação Comparativa das Modalidade de Transporte Público Urbano. Curitiba, Brasil.

- LIEBERMAN, E., & RATHI, A. (1975). "Traffic simulation". In: *Traffic Flow Theory Monographs A State-of-the-Art Report*. Transportation Research Board National Academy of Sciences. Disponível em:

 http://www.fhwa.dot.gov/publications/research/operations/tft. Acesso em: 08 Agosto 2013.
- LIND, G., SCHMIDT, K., ANDERSSON, H., ALGERS, S., CANEPARI, G., TARANTO, C. DI, ... GABARD, J. (1999). Best Practice Manual: Simulation Modelling Applied to Road Transport European Scheme Tests. Institute for Transport Studies, University of Leeds, Yorkshire e Humber, England
- MAIA, F. (2007). Calibração e validação de modelos de meso e microssimulação do tráfego para a avaliação de intervenções tático-operacionais na malha viária urbana.

 Dissertação de M.Sc , Universidade Federal do Ceará, Fortaleza, CE, Brasil. Disponível em: http://www.repositorio.ufc.br:8080/ri/handle/123456789/1556>. Acesso em: 15 Março 2013.
- MOLINERO, A., & ARELLANO, I. (2002). *Transporte público, Planeacion, Diseño Operacion y administracio Capitulo 4*. Vol. capitulo 4, pp. 157–174. México.
- MOLINERO, A., & SÁNCHEZ, I. (2002). *Transporte público: planeación, diseño, operación y administración*. Quarta edicao, p. 729.
- MOREIRA, R. B. (2005). Uma contribuição para avaliação do modelo "corsim" em simulações de tráfego urbano no Rio de Janeiro. Dissertação de M.Sc, PET/COPPE Universidade Federal de Rio de Janeiro, RJ, Brasil.
- MORENO, J., & ORTIZ, J. (2001). *Modelo de cambio de carril para un simulador microscópico de tráfico urbano*. em *IV Congreso de Ingeniería de Organización*. Disponível em: http://www.adingor.es/congresos/web/articulo/detalle/a/1577. Acesso em: 26 Junho 2013.
- NATIONAL RESEARCH COUNCIL TRANSPORTATION RESEARCH BOAR. (2000). Transit Concepts. In HCM 2000, Highway Capacity Manual (pp. 7–18).

- NTU. (2007). *Perfil das Empresas Operadoras de Ônibus Urbanos do Brasil*. Brasil. Disponível em: <hppt://www.ntu.org.br>. Acesso em: 08 Setembro 2013.
- NTU. (2011). *Os desafios da nova movilidad urbana-Anuario NTU* (Vol. 2011). Brasil. Disponível em: <hppt: //www.ntu.org.br/novosite/arquivos/anuario_20102011_web.pdf>. Acesso em: 10 Setembro 2013.
- NTU. (2013). Faixas exclusivas de ônibus urbanos experiencias de sucesso (p. 38). Brasilia DF, Brasil.
- NTU, & SEDU/P. (2002). Prioridade para o Transporte Coletivo Urbano. Brasil.
- OKETCH, T., & CARRICK, M. (2005). Calibration and validation of a micro-simulation model in network analysis. Proceedings of the 84th TRB Annual Meeting, Washington, DC. Disponível em: http://tsh.ca/pdf/TRB05_paper05_1938_final.pdf. Acesso 10 Setembro 2013.
- OLIVEIRA, M. DE, & CYBIS, H. (2008). Revisão da Experiência de Calibração do Software Vissim Aplicado a um Estudo de Caso de Autoestrada Brasileira. VIII Seprosul—Semana de Engenharia de Produção Sul-Americana, pp. 1–12. Disponível em: http://redpgv.coppe.ufrj.br/index.php/es/produccion/articulos-cientificos/2008-1/484-revisao-da-experiencia-de-calibracao-do-software-vissim-aplicado-a-um-estudo-de-caso-de-autoestrada-brasileira/file. Acesso 10 Setembro 2013
- OLIVEIRA, U. DE F. (2010). *Monotrilho–uma opção de transporte público para a região metropolitana da grande vitória. XLII SBPO*, 1272–1283. Disponível em: http://www.sobrapo.org.br/sbpo2010/xliisbpo_pdf/72362.pdf>. Acesso 15 Setembro 2013.
- PERFEITURA DE FORTALEZA. (2012). *Implantação do Serviço Rápido de Ônibus de Fortaleza (BRS-FOR)*. Fortaleza, CE, Brasil. Disponível em: http://www.fortaleza.ce.gov.br/sites/default/files/etufor/arquivos_conteudos/brs_for.pdf >. Acesso 17 Outubro 2013.

- PTV AG. (2012). VISSIM 5.40 User Manual. Karlsruhe, Germany: PTV Planung Transport Verkehr AG.
- RECK, G., SZASZ, P., & GASPARETTO, V. (1999). *Corredores de transporte público de alta capacidade o caso da avenida caracas*. Disponível em: http://www.geocities.ws/qqbis/colombia/bogot.htm>. Acesso 17 julho 2013.
- SANTOS, P. (2013). Método de calibração de um modelo veículo seguidor para BRT e ônibus em corredor segregado. Dissertação de M.Sc, UFRGS, Universidade Federal do Rio Grande do Sul, Brasil. Disponível em: http://www.lume.ufrgs.br/handle/10183/75917>. Acesso 20 setembro 2013.
- SILVA, A., VASCONCELOS, L., CORREIA, G., & SANTOS, S. (2013). Microsimulação aplicada aos estudos de acessibilidade. Disponível em: http://repositorio.ipv.pt/handle/10400.19/1685>. Acesso 17 Outubro 2013.
- SOUZA, M. V. J. DE. (2014). Análise de desempenho de uma interseção não semaforizada em nível (Rotatória) Utilizando Microssimulação Estudo De Caso: Anel Viário Da UFRJ. Projeto de graduação, em engenharia Civil, Universidade Federal do Rio de Janeiro, RJ, Brasil
- TSUTOMU, Y., & NAKAMURA, F. (2005). Study on the relationship between capacity, cost and operation alternatives of bus rapid transit. Journal of the Eastern Asia Society for Transportation Studies, v. 6, pp. 408-422. Disponível em: http://www.easts.info/online/journal_06/408.pdf>. Acesso: 23 Outubro 2013.
- VANNASSE HAGEN BRUSTLIN INC. (2011). *Bus Priority Treatment Guidelines*. pp. 8–9, Washington, D.C.
- VASCONCELOS, J. A. Mobilidade com qualidade avaliação da implantação BRS–FOR. Fortaleza, Brasil. Disponível em:

 http://www.fortaleza.ce.gov.br/sites/default/files/u177/brs-for_avaliacao_14-09-2012.pdf>. Acesso: 25 fevereiro 2013.

- VUCHIC, V. R. (1981). Urban Transit Systems and Technology.
- WOODY, T. (2006). *Calibrating freeway simulation models in vissim*. University of Washington Seattle.
- WRIGHT, L., & HOOK, W. (2007). Bus rapid transit planning guide. (L. Wright & W. Hook, Eds.) (p. 898). Disponível em:

 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Bus+Rapid+Transport+Planning+Guide#0. Acesso: 13 Novembro 2014.
- ZHU, L., YU, L., CHEN, X., & GUO, J. (2012). Simulated Analysis of Exclusive Bus Lanes on Expressways: Case Study in Beijing, China. Journal of Public Transportation, 111–128. Disponível em: http://trid.trb.org/view.aspx?id=1237243. Acesso: 10 Dezembro 2013.

APÊNDICES

APÊNDICE A - RESULTADOS DETALHADOS DA ANÁLISE ESTATÍSTICA E VARIÂNCIAS (ANOVA-FATOR ÚNICO) DA AMOSTRAGEM DE TEMPOS DE VIAGEM ÔNIBUS.

TEMPO DE VIAGEM			
# Replicações (n)	Semente	SIMULADO (s)	OBSERVADO EM CAMPO Dados CET-Rio(s)
1	2	788.1	840
2	4	806.6	420
3	6	774.6	600
4	8	765.8	660
5	10	761.2	780
6	12	782.8	540
7	14	763.4	1020
8	16	760.5	960
9	18	768.9	780
10	20	777.7	840
11	22	769.2	900
12	24	774.8	660
13	26	805.9	900
14	28	808.9	840
15	30	765.2	840
16	32	772.1	840
17	34	780.1	1020
18	36	782.9	720
19	38	819.8	600
20	40	806	600
21			480
22			420
23			420
24			480
25			600
26			600
27			1080
28			720
29			900

ANÁLISE ESTATÍSTICA ANOVA-FATOR ÚNICO:

Grupos	Contagem	Soma	Média (s)	Variância
SIMULADO	20	15634.50	781.73	331.03
OBSERVADO EM CAMPO	29	21060.00	726.21	37117.24

ANÁLISES DE VARIÂNCIA

	Soma de quadrados	Graus de liberdade	Média dos Quadrados	F	P - Valor	F Crítico
Entre grupos	36483.89163	1	36483.89163	1.640	0.207	4.047
Dentro dos grupos	1045572.416	47	22246.22162			
Total	1082056.308	48				

APÊNDICE B - RESULTADOS DA SIMULAÇÃO - INDICADORES DE DESEMPENHO DA REDE.

a) Cenário 1

Indicador	Valores	Desvio padrão	n	Erro (a)	t	h	IC -	IC+
Número de veículos	7765.00	245.00	10	5%	2.262	2.26%	7589.74	7940.26
Tempo de viagem (h)	531.43	13.84	10	5%	2.262	1.86%	521.53	541.33
Distância (km)	7309.66	293.82	10	5%	2.262	2.88%	7099.48	7519.85
Atraso (h)	298.86	10.92	10	5%	2.262	2.61%	291.05	306.68
Atraso médio por veículo (s)	138.70	6.97	10	5%	2.262	3.60%	133.71	143.68
Velocidade média (km/h)	13.76	0.43	10	5%	2.262	2.26%	13.45	14.07

b) Cenário 2

Indicador	Valores	Desvio padrão	n	Erro (a)	t	h	IC -	IC+
Número de veículos	7800.90	342.10	10	5%	2.262	3.14%	7556.18	8045.62
Tempo de viagem (h)	530.90	12.82	10	5%	2.262	1.73%	521.73	540.08
Distância (km)	7409.93	390.33	10	5%	2.262	3.77%	7130.71	7689.16
Atraso (h)	295.04	11.21	10	5%	2.262	2.72%	287.02	303.05
Atraso médio por veículo (s)	136.48	9.98	10	5%	2.262	5.23%	129.34	143.62
Velocidade média (km/h)	13.96	0.61	10	5%	2.262	3.12%	13.52	14.39

c) Cenário 3

Indicador	Valores	Desvio padrão	n	Erro (a)	t	h	IC -	IC+
Número de veículos	7947.50	174.51	10	5%	2.262	1.57%	7822.66	8072.34
Tempo de viagem (h)	505.44	6.30	10	5%	2.262	0.89%	500.93	509.95
Distância (km)	7926.27	242.51	10	5%	2.262	2.19%	7752.79	8099.76
Atraso (h)	251.99	8.97	10	5%	2.262	2.55%	245.57	258.41
Atraso médio por veículo (s)	114.25	6.32	10	5%	2.262	3.96%	109.73	118.77
Velocidade média (km/h)	15.68	0.48	10	5%	2.262	2.19%	15.34	16.03

d) Cenário 4

Indicador	Valores	Desvio padrão	n	Erro (a)	t	h	IC -	IC+
Número de veículos	8021.38	82.34	8	5%	2.365	0.86%	7952.54	8090.21
Tempo de viagem (h)	517.49	7.60	8	5%	2.365	1.23%	511.13	523.85
Distância (km)	8364.75	81.96	8	5%	2.365	0.82%	8296.23	8433.28
Atraso (h)	249.42	5.30	8	5%	2.365	1.78%	244.99	253.85
Atraso médio por veículo (s)	111.94	1.82	8	5%	2.365	1.36%	110.42	113.46
Velocidade média (km/h)	16.17	0.11	8	5%	2.365	0.57%	16.07	16.26

e) Cenário 5

Indicador	Valores	Desvio padrão	n	Erro (α)	t	h	IC -	IC+
Número de veículos	7909.56	319.45	9	5%	2.306	3.10%	7664.00	8155.11
Tempo de viagem (h)	518.06	15.06	9	5%	2.306	2.23%	506.49	529.63
Distância (km)	8230.51	445.82	9	5%	2.306	4.16%	7887.82	8573.20
Atraso (h)	254.18	6.93	9	5%	2.306	2.10%	248.85	259.51
Atraso médio por veículo (s)	115.89	6.41	9	5%	2.306	4.25%	110.96	120.82
Velocidade média (km/h)	15.88	0.53	9	5%	2.306	2.55%	15.47	16.28

f) Cenário 6

Indicador	Valores	Desvio padrão	n	Erro (a)	t	h	IC -	IC+
Número de veículos	7921.16	360.03	19	5%	2.101	2.19%	7747.63	8094.69
Tempo de viagem (h)	570.71	42.42	19	5%	2.101	3.58%	550.26	591.15
Distância (km)	8177.19	480.30	19	5%	2.101	2.83%	7945.69	8408.69
Atraso (h)	307.80	30.95	19	5%	2.101	4.85%	292.89	322.72
Atraso médio por veículo (s)	139.77	10.96	19	5%	2.101	3.78%	134.48	145.05
Velocidade média (km/h)	14.35	0.59	19	5%	2.101	1.98%	14.07	14.64

g) Cenário a fluxo livre - só ônibus.

Indicador	Valores	Desvio padrão	n	Erro (a)	t	h	IC -	IC+
Número de veículos	593.50	4.22	10	5%	2.262	0.51%	590.48	596.52
Tempo de viagem (h)	90.14	0.85	10	5%	2.262	0.67%	89.53	90.74
Distância (km)	1353.21	9.44	10	5%	2.262	0.50%	1346.45	1359.96
Atraso (h)	43.98	0.71	10	5%	2.262	1.16%	43.47	44.49
Atraso médio por veículo (s)	266.81	4.92	10	5%	2.262	1.32%	263.29	270.33
Velocidade média (km/h)	15.02	0.13	10	5%	2.262	0.60%	14.92	15.11

h) Resumo dos resultados dos dados por tipo de veiculo

INDICADOR	TIPO DE VEICULO	CENÁRIO Fluxo livre (ônibus)	CENÁRIO 1	CENÁRIO 2	CENÁRIO 3	CENÁRIO 4	CENÁRIO 5	CENÁRIO 6
70	Auto	0.00	3834.40	3996.20	4067.30	3950.13	4056.33	4044.72
TOS	Auto BRS	0.00	143.80	0.00	0.00	147.25	0.00	0.00
síct	Auto Garagens	208.50	196.30	196.40	196.10	194.63	196.11	209.17
NÚMERO DE VEÍCULOS	Taxi BRS	0.00	1394.80	1397.30	0.00	1446.13	1411.33	0.00
0 D	Taxi	0.00	1471.20	1477.20	2928.40	1521.75	1493.78	2915.00
MER	Moto	0.00	146.00	147.30	149.30	150.75	148.56	146.17
NÝ	Caminhão	0.00	217.70	218.40	222.40	225.75	218.44	222.22
	Ônibus	385.00	360.80	368.10	384.00	385.00	385.00	385.00
	Auto	0.00	214.14	224.27	215.56	232.52	243.25	266.00
-	Auto BRS	0.00	8.15	0.00	0.00	7.66	0.00	0.00
EM (F	Auto Garagens	12.33	15.79	15.42	14.42	12.04	11.76	12.05
TEMPO VIAGEM (H)	Taxi BRS	0.00	74.22	72.91	0.00	73.33	72.80	0.00
7 O O	Taxi	0.00	80.81	81.73	154.34	89.44	87.99	192.14
EME	Moto	0.00	6.91	6.91	6.42	7.13	6.82	6.66
L	Caminhão	0.00	11.95	12.25	11.69	12.89	13.00	15.10
	Ônibus	77.81	119.47	117.42	103.02	82.47	82.44	79.09
	Auto	0.00	3613.43	3765.99	3714.18	3911.72	3998.35	3778.12
	Auto BRS	0.00	95.42	0.00	0.00	123.40	0.00	0.00
(KM	Auto Garagens	254.30	207.68	213.00	209.23	212.40	206.86	214.77
CIA	Taxi BRS	0.00	847.01	849.28	0.00	1159.83	1130.29	0.00
DISTÂNCIA (KM)	Taxi	0.00	1367.31	1374.98	2677.72	1502.52	1447.52	2733.78
DIS	Moto	0.00	136.93	139.92	134.42	149.79	144.42	140.16
	Caminhão	0.00	204.50	206.61	203.61	216.40	212.28	213.67
	Ônibus	1098.90	837.39	860.16	987.11	1088.69	1090.78	1094.04
AT RA SO SO SO (H)	Auto	0.00	100.43	105.72	98.34	108.82	116.74	144.95

INDICADOR	TIPO DE VEICULO	CENÁRIO Fluxo livre (ônibus)	CENÁRIO 1	CENÁRIO 2	CENÁRIO 3	CENÁRIO 4	CENÁRIO 5	CENÁRIO 6
	Auto BRS	0.00	5.15	0.00	0.00	3.78	0.00	0.00
	Auto Garagens	4.43	9.26	8.71	7.83	5.34	5.23	5.31
	Ônibus	39.56	90.21	87.36	68.37	43.96	43.87	40.39
	Taxi BRS	0.00	47.54	46.16	0.00	36.73	37.13	0.00
	Taxi	0.00	38.08	38.75	69.93	42.25	42.55	105.61
	Moto	0.00	2.67	2.58	2.26	2.48	2.35	2.32
	Caminhão	0.00	5.53	5.77	5.28	6.07	6.30	8.35
	Auto	0.00	16.87	16.78	17.24	16.83	16.42	14.25
	Auto BRS	0.00	11.75	0.00	0.00	16.12	0.00	0.00
DE 1/H)	Auto Garagens	20.63	13.31	13.91	14.59	17.65	17.59	17.84
VELOCIDADE MÉDIA (KM/H)	Ônibus	14.12	7.03	7.34	9.59	13.20	13.23	13.83
LOC	Taxi BRS	0.00	11.42	11.65	0.00	15.82	15.53	0.00
M	Taxi	0.00	16.92	16.82	17.35	16.81	16.44	14.26
	Moto	0.00	19.82	20.27	20.96	21.01	21.16	21.04
	Caminhão	0.00	17.11	16.82	17.41	16.79	16.34	14.17
	Auto	0.00	94.40	95.53	87.17	99.17	103.77	129.89
(s)	Auto BRS	0.00	129.15	0.00	0.00	92.44	0.00	0.00
SOI	Auto Garagens	76.43	170.23	159.98	143.20	98.63	95.96	91.23
MÉL	Ônibus	369.88	902.55	856.18	641.04	411.05	410.25	377.64
ATRASOS MÉDIOS (s)	Taxi BRS	0.00	122.73	118.99	0.00	91.44	95.12	0.00
TRAE	Taxi	0.00	93.20	94.66	86.04	99.94	102.74	130.34
- VA	Moto	0.00	66.00	63.13	54.39	59.22	57.09	57.04
	Caminhão	0.00	91.61	95.44	85.48	97.05	104.37	135.70

ANEXOS

ANEXO A - CONTAGENS DE FLUXO VEICULAR CET-RIO

- a) INTERSEÇÃO Nº 15, Avenida Nossa Senhora de Copacabana X Rua Figueiredo de Magalhães
 - Fluxo 2

GERÊNCIA DE INFORMAÇÕES DE TRÁFEGO

RELATÓRIO DIÁRIO DE VOLUMES DE VEÍCULOS - CLASSIFICADO

LOCAL: Rua Figueiredo Magalhães, entre Rua Domingos Ferreira e Av. Nossa Senhora de Copacabana.

Data: 13/06/2012

Fluxo: 2 - Rua Figueiredo Magalhães.

Equipamento: MANUAL Dia da Semana: Quarta-feira A.P.: 2.1 Bairro: Copacabana

						Volume		de Copacab				A		Volume	(UCP)
Horário	Carros	Táxis	Vans	Ônibus	Caminhões	Parc.	Acum.	Horário	Carros	Táxis	Vans	Ônibus	Caminhões	Parc.	Acum.
00:00 as 00:15								12:00 as 12:15	59	26	2	7	4	110	473
00:15 as 00:30								12:15 as 12:30	56	21	3	11	5	114	463
00:30 as 00:45								12:30 as 12:45	62	33	5	12	7	139	477
00:45 as 01:00								12:45 as 13:00	58	29	3	10	4	120	482
01:00 as 01:15								13:00 as 13:15							
01:15 as 01:30								13:15 as 13:30							
01:30 as 01:45								13:30 as 13:45							
01:45 as 02:00								13:45 as 14:00							
02:00 as 02:15								14:00 as 14:15							
02:15 as 02:30								14:15 as 14:30							
02:30 as 02:45								14:30 as 14:45							
02:45 as 03:00								14:45 as 15:00							
03:00 as 03:15								15:00 as 15:15							
03:15 as 03:30								15:15 as 15:30							
03:30 as 03:45								15:30 as 15:45							
03:45 as 04:00								15:45 as 16:00							
04:00 as 04:15								16:00 as 16:15							
04:15 as 04:30								16:15 as 16:30							
04:30 as 04:45								16:30 as 16:45							
04:45 as 05:00								16:45 as 17:00							
05:00 as 05:15								17:00 as 17:15	66	22	4	12	1	121	121
05:15 as 05:30								17:00 as 17:15	68	24	3	14	0	127	247
05:30 as 05:45								17:30 as 17:45	71	27	2	9	2	124	371
05:45 as 06:00								17:45 as 18:00	57	25	3	11	1	112	483
06:00 as 06:15								18:00 as 18:15	90	26	5	6	3	140	502
06:00 as 06:15								18:15 as 18:30	68	36	4	7	0	124	499
06:30 as 06:45								18:30 as 18:45	72	28	3	5	0	114	489
06:45 as 07:00								18:45 as 19:00	69	31	3	8	2	125	502
07:00 as 07:15	108	13	8	13	2	162	162	19:00 as 19:15	62	26	3	7	1	109	471
07:15 as 07:30	101	16	6	15	0	157	319	19:15 as 19:30	58	22	2	8	0	100	447
07:30 as 07:45	105	12	7	12	1	153	471	19:30 as 19:45	69	31	1	8	0	119	452
07:45 as 08:00	138	15	6	16	2	199	670	19:45 as 20:00	58	27	1	10	0	109	436
08:00 as 08:15	90	16	5	13	1	142	650	20:00 as 20:15	30		- '	- 10		100	400
08:15 as 08:30	86	11	3	10	2	126	619	20:15 as 20:30							
08:30 as 08:45	99	22	8	12	3	161	628	20:30 as 20:45							
08:45 as 09:00	83	21	12	14	4	155	584	20:45 as 21:00							
09:00 as 09:15	86	22	5	13	5	151	593	21:00 as 21:15							
09:00 as 09:15 09:15 as 09:30	82	21	3	12	1	135	602	21:00 as 21:15 21:15 as 21:30							
09:30 as 09:45	83	30	5	15	2	155	596	21:30 as 21:45							
09:45 as 10:00	81	32	5	10	4	148	589	21:45 as 22:00							
10:00 as 10:15	01	52		10		170	303	22:00 as 22:15							
10:00 as 10:15 10:15 as 10:30				 				22:00 as 22:15 22:15 as 22:30		 		 			
10:15 as 10:30 10:30 as 10:45			 					22:15 as 22:30 22:30 as 22:45							
10:30 as 10:45 10:45 as 11:00								22:45 as 23:00							
	F2	20	2	10	1	100	100						1		
11:00 as 11:15	53 58	29 32	3	10 12	2	109 124	109 233	23:00 as 23:15					1		
11:15 as 11:30			4					23:15 as 23:30					1		
11:30 as 11:45	60	25		14	3	126	359	23:30 as 23:45		 		 			├──
11:45 as 12:00	60	28	1	8	4	114	473	23:45 as 24:00		<u> </u>		<u> </u>	<u> </u>		

• Fluxo 3

GERÊNCIA DE INFORMAÇÕES DE TRÁFEGO

RELATÓRIO DIÁRIO DE VOLUMES DE VEÍCULOS - CLASSIFICADO

LOCAL: Rua Santa Clara para Rua Siqueira Campos passando pela Rua Figueiredo Magalhães (Leme). Equipamento: MANUAL Data: 13/06/2012 Dia da Semana: Quarta-feira Fluxo: 3 - Av. Nossa Senhora de Copacabana.

A.P.: 2.1 Bairro: Copacabana

			.,	Α.,		Volume	(UCP)				.,	Α.,		Volume	(UCP)
Horário	Carros	Táxis	Vans	Ônibus	Caminhões	Parc.	Acum.	Horário	Carros	Táxis	Vans	Ônibus	Caminhões	Parc.	Acur
:00 as 00:15								12:00 as 12:15	175	247	28	71	15	636	244
:15 as 00:30								12:15 as 12:30	142	225	21	73	22	591	243
:30 as 00:45								12:30 as 12:45	177	214	28	74	10	603	2487
0:45 as 01:00								12:45 as 13:00	145	212	23	77	21	590	2420
1:00 as 01:15								13:00 as 13:15							
1:15 as 01:30								13:15 as 13:30							
:30 as 01:45								13:30 as 13:45							
1:45 as 02:00								13:45 as 14:00							
2:00 as 02:15								14:00 as 14:15							
2:15 as 02:30								14:15 as 14:30							
2:30 as 02:45								14:30 as 14:45							
2:45 as 03:00								14:45 as 15:00							
3:00 as 03:15								15:00 as 15:15							
3:15 as 03:30								15:15 as 15:30							
3:30 as 03:45								15:30 as 15:45							
3:45 as 04:00								15:45 as 16:00							
1:00 as 04:15								16:00 as 16:15							
4:15 as 04:30								16:15 as 16:30							
1:30 as 04:45								16:30 as 16:45							
1:45 as 05:00								16:45 as 17:00							
5:00 as 05:15								17:00 as 17:15	177	258	14	65	5	604	604
5:15 as 05:30								17:15 as 17:30	166	278	6	72	4	619	1223
5:30 as 05:45								17:30 as 17:45	155	283	10	69	6	614	1837
5:45 as 06:00								17:45 as 18:00	207	292	15	62	4	661	2497
6:00 as 06:15								18:00 as 18:15	181	237	14	49	3	548	2441
6:15 as 06:30								18:15 as 18:30	167	270	13	47	4	563	2385
6:30 as 06:45								18:30 as 18:45	204	307	8	73	3	689	2459
6:45 as 07:00								18:45 as 19:00	175	253	12	54	5	570	2369
7:00 as 07:15	168	205	13	63	4	535	535	19:00 as 19:15	167	319	12	68	4	658	2480
7:15 as 07:30	154	194	18	69	2	525	1060	19:15 as 19:30	130	208	4	53	3	467	2383
7:30 as 07:45	165	188	19	72	5	543	1602	19:30 as 19:45	165	226	6	60	2	536	2230
7:45 as 08:00	168	220	16	65	7	563	2165	19:45 as 20:00	147	235	8	56	4	523	2183
3:00 as 08:15	164	208	6	63	5	529	2159	20:00 as 20:15							
3:15 as 08:30	173	201	16	66	6	549	2183	20:15 as 20:30							
3:30 as 08:45	184	221	14	60	8	568	2208	20:30 as 20:45							
3:45 as 09:00	202	240	20	68	4	622	2268	20:45 as 21:00							
9:00 as 09:15	145	170	20	72	11	516	2255	21:00 as 21:15							
9:15 as 09:30	160	170	13	76	4	521	2227	21:15 as 21:30			<u> </u>	-			
9:30 as 09:45	158	221	8	52	6	515	2174	21:30 as21:45			<u> </u>	-			
9:45 as 10:00	143	220	11	59	6	517	2069	21:45 as 22:00							
0:00 as 10:15								22:00 as 22:15							
0:15 as 10:30			<u> </u>	-	1			22:15 as 22:30			<u> </u>	-			
0:30 as 10:45								22:30 as 22:45							
0:45 as 11:00								22:45 as 23:00							
1:00 as 11:15	180	250	14	68	10	615	615	23:00 as 23:15							
1:15 as 11:30	178	200	18	83	11	602	1217	23:15 as 23:30							
1:30 as 11:45	153	190	17	71	16	548	1764	23:30 as 23:45				ļ	1		
1:45 as 12:00	157	250	27	89	13	657	2421	23:45 as 24:00		1	ı	l	1		l

• Fluxo 4

GERÊNCIA DE INFORMAÇÕES DE TRÁFEGO

RELATÓRIO DIÁRIO DE VOLUMES DE VEÍCULOS - CLASSIFICADO

LOCAL: Av. Nossa Senhora de Copacabana, entre Rua Santa Clara e Rua Figueiredo de Magalhães.

Dia da Semana: Quarta-f
Fluxo: 4 - Av. Nossa Senhora de Copacabana.

Sentido: Av. Nossa Senhora de Copacabana virando à esquerda na Rua Figueiredo de Magalhães (Botafogo).

Dia da Semana: Quarta-feira

A.P.: 2.1 Bairro: Copacabana

Llorério	Corres	Távia	Vone	Anihous	Cominh Z	Volume	(UCP)	Llouduic	Corres	Távia	Vone	Anihous	Cominh Z	Volume	(UCP)
Horário	Carros	Táxis	Vans	Ônibus	Caminhões	Parc.	Acum.	Horário	Carros	Táxis	Vans	Ônibus	Caminhões	Parc.	Acum.
00:00 as 00:15								12:00 as 12:15	100	72	10	2	6	197	922
00:15 as 00:30								12:15 as 12:30	122	93	8	5	11	254	935
00:30 as 00:45								12:30 as 12:45	103	79	12	1	2	200	927
00:45 as 01:00								12:45 as 13:00	83	80	8	0	11	190	841
01:00 as 01:15								13:00 as 13:15							
01:15 as 01:30								13:15 as 13:30							
01:30 as 01:45								13:30 as 13:45							
01:45 as 02:00								13:45 as 14:00							
02:00 as 02:15								14:00 as 14:15							
02:15 as 02:30								14:15 as 14:30							
02:30 as 02:45								14:30 as 14:45							
02:45 as 03:00								14:45 as 15:00							
03:00 as 03:15								15:00 as 15:15							
03:15 as 03:30								15:15 as 15:30					1		
03:30 as 03:45								15:30 as 15:45							
03:45 as 04:00								15:45 as 16:00							
04:00 as 04:15								16:00 as 16:15					<u> </u>		+
04:00 as 04:15								16:00 as 16:15							
04:15 as 04:30 04:30 as 04:45								16:30 as 16:45							
04:45 as 05:00								16:45 as 17:00							
									440	404	•	_	_	200	200
05:00 as 05:15								17:00 as 17:15	116	104	0	1	0	222	222
05:15 as 05:30								17:15 as 17:30	104	118	4	1	1	230	452
05:30 as 05:45								17:30 as 17:45	116	137	6	0	3	264	717
05:45 as 06:00								17:45 as 18:00	99	93	5	0	3	202	919
06:00 as 06:15								18:00 as 18:15	125	81	4	0	0	210	907
06:15 as 06:30								18:15 as 18:30	111	110	5	0	5	235	911
06:30 as 06:45								18:30 as 18:45	119	95	6	0	1	222	869
06:45 as 07:00								18:45 as 19:00	113	98	4	3	1	224	890
07:00 as 07:15	94	88	8	0	3	195	195	19:00 as 19:15	109	115	3	0	0	227	907
07:15 as 07:30	62	74	12	2	2	156	351	19:15 as 19:30	105	80	4	0	2	193	865
07:30 as 07:45	76	67	15	1	2	164	515	19:30 as 19:45	111	76	2	0	1	191	834
07:45 as 08:00	91	98	7	0	4	203	718	19:45 as 20:00	79	88	1	0	0	168	778
08:00 as 08:15	83	87	3	1	3	181	703	20:00 as 20:15							
08:15 as 08:30	100	90	8	1	5	209	756	20:15 as 20:30							
08:30 as 08:45	107	94	5	0	7	218	811	20:30 as 20:45							
08:45 as 09:00	98	105	12	0	6	226	833	20:45 as 21:00							
09:00 as 09:15	200	90	9	3	4	313	966	21:00 as 21:15							
09:15 as 09:30	108	88	4	1	2	206	962	21:15 as 21:30							
09:30 as 09:45	104	93	0	1	2	203	947	21:30 as21:45							
09:45 as 10:00	109	100	7	2	1	222	944	21:45 as 22:00							
10:00 as 10:15								22:00 as 22:15							
10:15 as 10:30								22:15 as 22:30							
10:30 as 10:45								22:30 as 22:45							
10:45 as 11:00								22:45 as 23:00							
11:00 as 11:15	117	123	5	0	4	252	252	23:00 as 23:15							
11:15 as 11:30	124	108	4	0	3	241	493	23:15 as 23:30							
11:30 as 11:45	85	107	8	0	4	207	700	23:30 as 23:45							
11:45 as 12:00	128	128	10	1	5	277	977	23:45 as 24:00							

b) Avenida Nossa Senhora de Copacabana com Rua República do Peru

GERÊNCIA DE INFORMAÇÕES DE TRÁFEGO

CONTAGENS VOLUMÉTRICAS DE VEÍCULOS

LOCAL: Av. Nossa Senhora de Copacabana, entre Rua Paula Freitas e Rua República do Peru

AP: 2.1 Equipamento:

Bairro: Copacabana

AV. Nossa Senhora de Copacabana.

OBS.: Fluxo01 - SENTIDO Rua Paula Freitas para Rua República do Peru.

OBS.: Fluxo02 - FAIXAS BRS - sentido Rua Paula Freitas para Rua República do Peru.

OBS.: Fluxo07 - sentido Av. Atlantica para Av. Nossa Senhora de Copacabana.

	08/11/11	09/11/11	10/11/11	08/11/11	09/11/11	10/11/11	08/11/11	09/11/11	10/11/11
Horário (h)	Terca-feira	Quarta-feira	Quinta-feira	Terca-feira	Quarta-feira	Quinta-feira	Terca-feira	Quarta-feira	Quinta-feira
norano (n)	Fluxo01	Fluxo01	Fluxo01	Fluxo02	Fluxo02	Fluxo02	Fluxo07	Fluxo07	Fluxo07
	N. veic.	N. veic.	N. veic.	N. veic.	N. veic.	N. veic.	N. veic.	N. veic.	N. veic.
00:00 ás 01:00		752	827		367	374		100	86
01:00 ás 02:00		543	588		236	239		58	39
02:00 ás 03:00		410	516		149	197		23	29
03:00 ás 04:00		309	369		107	140		30	27
04:00 ás 05:00		284	331		107	134		19	17
05:00 ás 06:00		503	537		257	270		32	35
06:00 ás 07:00		966	953		570	567		92	92
07:00 ás 08:00		1448	1352		872	807		164	170
08:00 ás 09:00		1563	1578		853	872		197	155
09:00 ás 10:00		1624	1564		930	884		205	200
10:00 ás 11:00		1685			988			248	
11:00 ás 12:00		1622			917			370	
12:00 ás 13:00		1716			1006		372	438	
13:00 ás 14:00	1703	1680		1013	999		295	381	
14:00 ás 15:00	1706	1675		997	998		278	319	
15:00 ás 16:00	1671	1588		1006	966		256	338	
16:00 ás 17:00	1673	1607		1012	978		271	332	
17:00 ás 18:00	1782	1620		1071	980		303	384	
18:00 ás 19:00	1627	1608		933	966		319	306	
19:00 ás 20:00	1636	1522		998	899		324	342	
20:00 ás 21:00	1537	1533		958	922		314	325	
21:00 ás 22:00	1463	1484		754	774		227	234	
22:00 ás 23:00	1260	1298		615	630		197	197	
23:00 ás 24:00	1034	1019		494	486		153	112	
SOMA	17092	30059	8615	9851	16957	4484	3309	5246	850
P. DA MANHA	0	1624	1578	0	930	884	0	205	200
ENTREPICO	1706	1716	0	1013	1006	0	372	438	0
P. DATARDE	1782	1620	0	1071	980	0	324	384	0

c) Avenida Nossa Senhora de Copacabana entre Rua Prado Júnior e Rua Princesa Isabel

GERÊNCIA DE INFORMAÇÕES DE TRÁFEGO

RELATÓRIO DIÁRIO DE VOLUMES DE VEÍCULOS - CLASSIFICADO

Av. Nossa Senhora de Copacabana, entre Rua Prado Júnior e Av. Princesa Isabel LOCAL:

Equipamento: MANUAL Dia da Semana: Quinta- feira Ap 2.1 Bairro: Copacabana Data: 09/06/11 Fuxo 1 - Av Nossa Senhora de Copacabana, altura do n 78

Rua Prado Júnior e Av. Princesa Isabel

Havária	Correc	Távia	Vone	Anihum	Cominhãos	Volume	(UCP)	Llorério	Correc	Távia	Mone	Ônibus	Cominhãos	Volume	(UCP)
Horário	Carros	Táxis	Vans	Onibus	Caminhões	Parc.	Acum.	Horário	Carros	Táxis	Vans	Onibus	Caminhões	Parc.	Acum.
00:00 as 00:15								12:00 as 12:15	152	159	8	66	9	483	2012
00:15 as 00:30								12:15 as 12:30	166	158	9	62	7	485	1984
00:30 as 00:45								12:30 as 12:45	169	154	10	66	7	494	1950
0:45 as 01:00								12:45 as 13:00	163	172	13	65	10	512	1974
01:00 as 01:15	ì				i e			13:00 as 13:15	100					012	1071
	1										1		1		
01:15 as 01:30								13:15 as 13:30							
01:30 as 01:45								13:30 as 13:45							
01:45 as 02:00								13:45 as 14:00							
12:00 as 02:15								14:00 as 14:15							
12:15 as 02:30	1							14:15 as 14:30					1		
12:30 as 02:45								14:30 as 14:45							
2:45 as 03:00								14:45 as 15:00							
03:00 as 03:15	1							15:00 as 15:15					1		
03:15 as 03:30	1				1		1	15:15 as 15:30		1	1	1	1		
	-				 		 	15:15 as 15:30 15:30 as 15:45		 	 	 	 		
03:30 as 03:45 03:45 as 04:00	-				 		 	15:45 as 16:00		 	 	 	 		
04:00 as 04:15	†				1		1	16:00 as 16:15		1	1	1	1		
	1										1		1		
14:15 as 04:30								16:15 as 16:30							-
14:30 as 04:45	ļ				-			16:30 as 16:45					 		
4:45 as 05:00	 							16:45 as 17:00			1		 		
15:00 as 05:15								17:00 as 17:15	179	160	8	71	7	519	519
05:15 as 05:30								17:15 as 17:30	188	153	8	67	6	510	1029
05:30 as 05:45								17:30 as 17:45	193	161	10	69	6	530	1559
05:45 as 06:00								17:45 as 18:00	176	164	7	72	9	525	2084
06:00 as 06:15								18:00 as 18:15	179	177	8	70	10	539	2104
06:15 as 06:30								18:15 as 18:30	184	165	8	67	10	525	2119
06:30 as 06:45								18:30 as 18:45	168	175	9	70	5	518	2107
06:45 as 07:00								18:45 as 19:00	160	168	11	64	6	494	2076
07:00 as 07:15	260	168	6	66	8	597	597	19:00 as 19:15	170	161	12	68	5	505	2042
07:15 as 07:30	240	153	8	63	5	552	1148	19:15 as 19:30	161	149	8	64	8	476	1993
07:30 as 07:45	257	165	10	73	4	603	1751	19:30 as 19:45	177	158	11	66	8	509	1983
7:45 as 08:00	229	176	8	65	8	573	2325	19:45 as 20:00	163	153	7	63	6	475	1965
08:00 as 08:15	270	213	14	75	7	678	2406	20:00 as 20:15							
18:15 as 08:30	277	226	9	69	6	678	2532	20:15 as 20:30							
08:30 as 08:45	244	249	9	64	10	664	2593	20:30 as 20:45							
18:45 as 09:00	246	244	8	72	6	671	2690	20:45 as 21:00					Ĭ		
19:00 as 09:15	253	250	8	64	7	667	2679	21:00 as 21:15							
09:15 as 09:30	224	236	13	65	9	635	2636	21:15 as 21:30					Ì		
09:30 as 09:45	241	248	10	67	10	667	2640	21:30 as21:45		1		1			
9:45 as 10:00	220	245	7	63	7	626	2596	21:45 as 22:00		1		1			
0:00 as 10:15								22:00 as 22:15							
0:15 as 10:30	1							22:15 as 22:30			1		1		
0:30 as 10:45	1				1		1	22:30 as 22:45		1	1	1	1		
	-				 		 			 	 	 	 		+
0:45 as 11:00	440	400		-00	- 44	400	400	22:45 as 23:00		1	 	1	-		\leftarrow
1:00 as 11:15	143	166	8	66	14	490	490	23:00 as 23:15			 		-		
11:15 as 11:30	164	169	9	68	10	513	1003	23:15 as 23:30		1	 	1	ļ		₩
11:30 as 11:45	179	144	8	82	7	528	1530	23:30 as 23:45			<u> </u>		ļ		
11:45 as 12:00	162	151	6	69	8	488	2019	23:45 as 24:00			l		l		<u> </u>

d) Tempos de viagem - estudo de placas Avenida Nossa Senhora de Copacabana

GERÊNCIA DE INFORMAÇÕES DE TRÁFEGO

RELATÓRIO DIÁRIO DE VOLUMES DE VEÍCULOS - CLASSIFICADO

LOCAL: Corredor BRS Av. Nossa Senhora de Copacabana.

Ponto "A" Entre Rua Francisco Sá e Rua Souza Lima. Ponto "B" Entre Av. Prado Júnir e Av. Princesa Isabel.

Fluxo A para B

DISTANCIA 2816.00

A.P: 2.1

Bairro: Copacabana

			DATA: 08/07/201	3 (Segunda - Feira)		
	Period	o: 7h ás 9h			Periodo	: 017h ás 20h	
PLACA	HORÁRIO PONTO A	HORÁRIO PONTO B	TEMPO (min)	PLACA	HORÁRIO PONTO A	HORÁRIO PONTO B	TEMPO (min)
42663	7:00:00 a.m.	7:14:00 a.m.	14:00	42569	5:04:00 p.m.	5:20:00 p.m.	16:00
41324	7:10:00 a.m.	7:17:00 a.m.	07:00	42582	5:05:00 p.m.	5:27:00 p.m.	22:00
42633	7:10:00 a.m.	7:20:00 a.m.	10:00	27547	5:05:00 p.m.	5:30:00 p.m.	25:00
27611	7:11:00 a.m.	7:22:00 a.m.	11:00	42501	5:15:00 p.m.	5:35:00 p.m.	20:00
27557	7:13:00 a.m.	7:26:00 a.m.	13:00	27540	5:16:00 p.m.	5:32:00 p.m.	16:00
42597	7:14:00 a.m.	7:23:00 a.m.	09:00	27569	5:23:00 p.m.	5:47:00 p.m.	24:00
27597	7:15:00 a.m.	7:32:00 a.m.	17:00	27573	5:24:00 p.m.	5:41:00 p.m.	17:00
27541	7:21:00 a.m.	7:37:00 a.m.	16:00	41324	5:34:00 p.m.	5:50:00 p.m.	16:00
42674	7:22:00 a.m.	7:35:00 a.m.	13:00	42674	5:37:00 p.m.	5:51:00 p.m.	14:00
27630	7:24:00 a.m.	7:38:00 a.m.	14:00	27509	5:40:00 p.m.	5:58:00 p.m.	18:00
41332	7:25:00 a.m.	7:40:00 a.m.	15:00	42597	5:43:00 p.m.	6:06:00 p.m.	23:00
27612	7:26:00 a.m.	7:37:00 a.m.	11:00	42510	5:52:00 p.m.	6:09:00 p.m.	17:00
42619	7:28:00 a.m.	7:43:00 a.m.	15:00	27553	6:00:00 p.m.	6:14:00 p.m.	14:00
42556	7:30:00 a.m.	7:44:00 a.m.	14:00	27648	6:00:00 p.m.	6:17:00 p.m.	17:00
41085	7:36:00 a.m.	7:50:00 a.m.	14:00	27557	6:03:00 p.m.	6:20:00 p.m.	17:00
27636	7:40:00 a.m.	7:54:00 a.m.	14:00	27597	6:04:00 p.m.	6:15:00 p.m.	11:00
42621	7:42:00 a.m.	7:59:00 a.m.	17:00	42665	6:06:00 p.m.	6:22:00 p.m.	16:00
42644	7:43:00 a.m.	7:55:00 a.m.	12:00	42663	6:07:00 p.m.	6:23:00 p.m.	16:00
27580	7:50:00 a.m.	8:00:00 a.m.	10:00	27530	6:13:00 p.m.	6:30:00 p.m.	17:00
27512	7:51:00 a.m.	8:01:00 a.m.	10:00	42632	6:20:00 p.m.	6:34:00 p.m.	14:00
42632	7:53:00 a.m.	8:01:00 a.m.	08:00	27571	6:22:00 p.m.	6:36:00 p.m.	14:00
41018	7:55:00 a.m.	8:02:00 a.m.	07:00	27600	6:22:00 p.m.	6:37:00 p.m.	15:00
27601	7:55:00 a.m.	8:02:00 a.m.	07:00	41332	6:23:00 p.m.	6:39:00 p.m.	16:00
41352	7:57:00 a.m.	8:05:00 a.m.	08:00	27611	6:23:00 p.m.	6:39:00 p.m.	16:00
27561	7:59:00 a.m.	8:09:00 a.m.	10:00	27541	6:25:00 p.m.	6:40:00 p.m.	15:00
42595	8:00:00 a.m.	8:10:00 a.m.	10:00	42574	6:29:00 p.m.	6:42:00 p.m.	13:00
41022	8:02:00 a.m.	8:20:00 a.m.	18:00	27521	6:30:00 p.m.	6:44:00 p.m.	14:00
27571	8:03:00 a.m.	8:15:00 a.m.	12:00	41085	6:32:00 p.m.	6:48:00 p.m.	16:00
27635	8:10:00 a.m.	8:25:00 a.m.	15:00	42634	6:32:00 p.m.	6:50:00 p.m.	18:00
Media			12:06		Pomedio		
Desvio Padrão			03:13		0	03:15	
	Min		07:00		11:00		
	Max		18:00		25:00		

ANEXO B - AVALIAÇÃO DA COMPLEXIDADE NOS MEIOS DE TRANSPORTE - FORMULÁRIO DA PESQUISA.

AVALIAÇÃO DA COMPLEXIDADE NOS MEIOS DE TRANSPORTE

Olá!

Este questionário faz parte de uma pesquisa de mestrado do Programa de Pós Graduação em Engenharia de Transportes na Universidade Federal do Rio de Janeiro, este estudo pretende qualificar e quantificar alguns atributos de operação dos meios de transporte com o objetivo de poder categorizá-los num nível de complexidade; para tal finalidade se pede avaliar cada sistema de transporte com os atributos encontrados na literatura:

- 1. Confiabilidade: frequência, horários, número de linhas, horário de operação, informações disponíveis;
- 2. Conforto: nível de ocupação do veículo, tempo de viagem;
- 3. Rapidez: variação da duração da viagem, velocidade de operação;
- 4. Acessibilidade: abrangência do sistema de transporte e acesso as atividades;
- 5. Segurança: segurança durante a viagem relacionado os tipos de acidentes acontecidos;
- 6. Nível de investimento: custo inicial de implantação do sistema de transporte.

O formulário deve ser preenchido levando em consideração o seu conhecimento no tema de transportes de maneira geral não, necessariamente, tem que ver com o transporte na cidade do Rio de Janeiro, pode ser de suas experiências em outras cidades ou pesquisas.

Os dados coletados nesta pesquisa são sigilosos.

Em caso de dúvidas e maiores informações: duban@pet.coppe.ufrj.br

Obrigado pela sua disposição e interesse em participar dessa pesquisa

*obrigatório

DADOS GERAIS

1.	Dados gerais *
	Mulher
	Homem
2.	Grau de instrução concluído ou em conclusão *
	3º grau completo
	Especialização
	Mestrado
	Doutorado
	Otros:

3.	E-mail o	de	contato 1	k		

AVALIAÇÃO DOS ATRIBUTOS

Confiabilidade, conforto, rapidez, acessibilidade, segurança, nível de investimento.

I. CONFIABILIDADE

A confiabilidade pode ser avaliada pelo nível de precisão com que as linhas dos sistemas de transporte chegam ao ponto de parada, assim como o grau de informação divulgado em quanto a chegada das unidades de transporte e seus horários de operação nestes sistemas, este elemento poderá ser avaliado segundo a percepção do especialista levando em consideração a seguinte tabela de classificação;

Tabela de avaltação Confiabilidade

CLASSIFICAÇÃO	CARACTERÍSTICAS
Excelente	Frequências sem atraso, informação sobre as linhas, painel eletrônico com informação do tempo de chegada dos veículos de transporte.
Ótimo	Frequências sem atrasos, com informação sobre as linhas, sem painel informativo.
Bom	Frequência sem atrasos, sem informação sobre as linhas, sem painel informativo.
Regular	Frequências com atrasos moderados.
Ruim	Não tem conhecimento da frequência, tem informação das linhas.
Péssimo	Não tem conhecimento da frequência do ônibus nem da hora de chegada, nem informação das linhas.

Fonte: adaptado de (CAL & MAYOR, 2005) e (FERRAZ; TORRES, 2004).

4. CONFIABILIDADE *

Classifique o nível de confiabilidade dos seguintes sistemas de transporte:

	EXCELENTE	ÓMITÓ	BOM	REGULAR	RUIM	PĖSSIMO	DESCONHEÇO
Ônibus convencional		\bigcirc	\bigcirc		\bigcirc		
Ônibus em faixas exclusivas (BRS)					\bigcirc		
BRT							
BONDE							
VLT							
TREM SUBURBANO			\bigcirc		\bigcirc		
METRÔ							
MONOTRILHO							

5.	Comentários
II.	CONFORTO

II. CON CIVIO

O conforto vem acompanhado de vários fatores que devem ser levados em consideração. A possibilidade de ir sentado, a temperatura interna, a ventilação e o ruído, no entanto o grau de conforto pode ser estabelecido pelo comprimento da viagem, já que se a viagem for curta, ir sentado não interessa muito. Neste caso o conforto vai relacionado com o tempo de deslocamento da viagem(CAL & MAYOR, 2005). na tabela se apresentam as classificaçãoes encontradas na literatura sobre conforto, de acordo com a densidade de ocupação e a duração mínima da viagem:

Indicadores de conforto densidade de ocupação e tempo de viagem.

CLASSIFICAÇÃO	DENSIDADE OCUPAÇÃO (pass./m^2)	DURAÇÃO MÍNIMA DA VIAGEM
Excelente	Todos sentados	
Ótimo	0 - 1, 5	< 90
Bom	1,5 - 3	< 60
Regular	3 - 4,5	< 40
Ruim	4,5 - 6	< 10
Péssimo	> 6	< 2

Fonte: (CAL & MAYOR, 2005)

6. CONFORTO *

Classifique o nível de conforto dos seguintes sistemas de transporte:

	EXCELENTE	ÓTIMO	BOM	REGULAR	RUIM	PÉSSIMO	DESCONHEÇO
Ônibus							
Ônibus em faixas exclusivas (BRS)							
BRT							
BONDE							
VLT							
TREM SUBURBANO							
METRÔ							
MONOTRILHO							

7.	Comentários
III.	RAPIDEZ (VELOCIDADE)

(CAL & MAYOR, 2005) define a rapidez através de dois pontos de vista. O primeiro que se relaciona com aspectos de operação do sistema como a necessidade de transbordo e pagamento da tarifa e, o segundo, a relação do tempo da viagem e da velocidade de operação, este último, será levado em consideração para este estudo.

Esta variável poderá ser avaliada levando em consideração a velocidade de operação como se apresenta na seguinte tabela:

Avaliação rapidez (velocidade)

CLASSIFICAÇÃO	VELOCIDADE DE OPERAÇÃO KM/H
Excelente	>=40
Ótimo	30 - 40
Bom	20 - 30
Regular	10 - 20
Ruim	5 - 10
Péssimo	0 -5

Fonte: adaptado de (LERNER; NTU, 2009).

8. RAPIDEZ *

Classifique o nível de Rapidez dos seguintes sistemas de transporte:

	EXCELENTE	ÓTIMO	BOM	REGULAR	RUIM	PÉSSIMO	DESCONHEÇO
Ônibus convencional							
Ônibus em faixas exclusivas (BRS)							
BRT							
BONDE							
VLT							
TREM SUBURBANO							
METRÔ							
MONOTRILHO							

9.	Comentários

IV. ACESSIBILIDADE

Segundo (MOLINERO; SÁNCHEZ, 2002) pode-se entender a acessibilidade como a facilidade de deslocamento de um lugar para o outro com o objetivo de realizar alguma atividade (trabalho, serviços, lar) mediante um meio de transporte, para determinado grupo de pessoas e em diversas horas do dia.

Entrando com maior detalhe (CAL & MAYOR, 2005) relaciona a acessibilidade com tempo de acesso ao pontos de parada das unidades de transporte, junto com o tempo de espera do veículo. Além disso estabelece dois tipos de acessibilidade a acessibilidade locacional e a acessibilidade temporária, a primeira se refere ao nível de proximidade com os pontos de embarque e desembarque e a segunda com a frequência do serviço derivado da demanda. Neste trabalho será utilizada a acessibilidade locacional como medida de análises, na tabela a seguir se apresentam os indicadores deste atributo encontrados na literatura:

Indicadores de acessibilidade locacional

CLASSIFICAÇÃO	TEMPO	DISTANCIA			
CLASSIFICAÇÃO	(min)	A PÉ (m)	Em AUTO(M)		
Excelente	< 2	< 100	< 0,8		
Ótimo	2 - 4	100 - 200	0,8 - 1,6		
Bom	4 - 7,5	200 - 400	1,6 - 3,2		
Regular	7,5 - 12	400 - 600	3,2 - 4,8		
Ruim	12 - 20	600 - 1000	4,8 - 8		
Péssimo	>20	> 1000	> 8		

Fonte: (CAL & MAYOR, 2005)

10. ACESSIBILIDADE *

Classifique o nível de Acessibilidade dos seguintes sistemas de transporte:

	EXCELENTE	ÓTIMO	BOM	REGULAR	RUIM	PĖSSIMO	DESCONHEÇO
Ônibus convencional							
Ônibus em faixas exclusivas (BRS)							
BRT							
BONDE							
VLT							
TREM SUBURBANO							
METRÔ							
MONOTRILHO							

11.	Comentários
V.	SEGURANÇA

CAL & MAYOR, (2005) e FERRAZ e TORRES, (2004) concordam que o aspecto mais relevante na segurança compreende o nível de acidentalidade no sistema, assim como atos criminais e de violência em contra dos usuários, dos veículos o dos pontos de paradas o terminais e do próprio sistema.

Para o analises se levara em consideração o nível de acidentalidade devido que é mais conhecido maneira geral em cada meio de transporte; este atributo poderá ser avaliado segundo os indicadores da seguinte tabela:

Indicador do nivel de segurança

GRADO DE SEGURANÇA	CARACTERÍSTICAS
Muito alto	Baixo índice de acidentalidade
Alto	Baixo índice de acidentalidade, sem mortes ne feridos, só choques
Regular	Moderado índice de acidentalidade, com feridos.
Baixo	Alto índice de acidentalidade, com mortes

Fonte: adaptado de (CAL & MAYOR, 2005) e (FERRAZ; TORRES, 2004).

12. SEGURANÇA *

Classifique o nível de Segurança dos seguintes sistemas de transporte:

	MUITO ALTO	ALTO	REGULAR	BAIXO	DESCONHEÇO
Ônibus convencional					
Ônibus em faixas exclusivas (BRS)					
BRT					
BONDE					
VLT					
TREM SUBURBANO					
METRÔ					
MONOTRILHO					

13.	Comentários

VI. NÍVEL DE INVESTIMENTO

A avaliação deste atributo envolve diretamente o custo inicial de implantação do sistema de transporte como se apresenta na seguinte tabela:

NÍVEL DE INVESTIMENTO	CUSTO (US\$ MILHÕES)
Muito alto	> 862
Alto	575 - 862
Moderado	230 - 575
Regular	57 - 230
Baixo	< 57

Fonte: adaptado de (LERNER; NTU, 2009), tasa de cambio de dólar Banco de Brasil 2009.

14. NÍVEL DE INVESTIMENTO *

Classifique o nível de Investimento dos seguintes sistemas de transporte:

	MUITO ALTO	ALTO	MODERADO	REGULAR	BAIXO	DESCONHEÇO
Ônibus convencional						
Ônibus em faixas exclusivas (BRS)						
BRT BONDE VLT						
TREM SUBURBANO METRÔ MONOTRILHO						

15.	Comentários	
	. Pesos das variáveis undo sua experiencia, que peso daria para cada u	ns dos atributos estudados, numa escala de 0
-10. (a S	OMATÓRIA dos pesos de cada atributo dever ser	igual a 10)
16.	7.1 CONFIABILIDADE *	
17.	7.2 CONFORTO *	
18.	7.3 RAPIDEZ *	
19.	7.4 ACESSIBILIDADE *	
20.	7.5 SEGURANÇA *	
21.	7.6 NÍVEL DE INVESTIMENTO *	