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O transporte de cargas é uma fonte de emissões de gases de efeito estufa em um cenário 

global voltado para a redução de emissões. A descarbonização do setor é desafiadora pela 

dependência de combustíveis fósseis, enquanto esforços para redução de emissões não 

são implantados com a agilidade adequada para atender às metas climáticas. Essa tese 

visa analisar as dinâmicas do sistema de transporte de cargas em relação a implementação 

de políticas de descarbonização. A Dinâmica de Sistemas destaca-se pela sua adequação 

para investigar o impacto de políticas e estratégias ao longo do tempo, considerando-se a 

complexidade dinâmica dos sistemas estruturados em laços de causa-e-efeito e atrasos 

entre os diversos elementos do sistema. A revisão bibliográfica evidenciou uma lacuna 

quanto a exploração adequada das dinâmicas que regem o tempo de resposta do sistema. 

Baseando-se na lacuna existente, propôs-se um modelo conceitual representado por 

diagramas de causa-e-efeito, explorando as interações entre seus componentes e os pontos 

de alavancagem do sistema. Por fim, um modelo de simulação foi desenvolvido e aplicado 

ao sistema de transporte de cargas brasileiro. Os resultados evidenciaram a necessidade 

de um conjunto de políticas para a descarbonização do setor. Quanto mais cedo as 

políticas forem aplicadas, melhor será o abatimento das emissões no longo prazo. Os 

atrasos na implementação das políticas devem ser analisados com cautela, para que 

políticas de curto prazo não prejudiquem os benefícios das políticas de longo prazo.  
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Freight transport represents a source of greenhouse gas emissions in a global scenario 

aimed at reducing emissions. The decarbonization of this sector is challenging due to the 

high dependence on fossil fuels, while efforts to reduce emissions are not implemented 

fast enough to meet climate goals. This Ph.D. dissertation aims to analyze the dynamics 

that govern the time response of the freight transport system to decarbonization measures 

implementation. Given the complexity of the freight transport system, System Dynamics 

stands out for its suitability to investigate the impact of policies and strategies over time, 

considering the dynamic complexity of systems structured in feedback loops and delays 

between the system’s elements. A literature review showed a gap regarding the adequate 

exploration of the dynamics that govern the system’s time response to the implementation 

of decarbonization measures. Based on this gap, a conceptual model was proposed 

through a causal loop diagram, exploring the interactions between its components and the 

dynamic levers of the system. Finally, a simulation model was developed and applied to 

the Brazilian freight system. The results evidenced that a set of measures is needed to 

achieve a compelling decarbonization result. The sooner the measures are enforced, the 

better the emissions abatement in the long run. The delays in their implementation should 
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1 Introduction 

This chapter addresses some aspects related to the need to decarbonize the freight 

transport system to mitigate global warming and climate change. We highlight the 

necessity for decision-support instruments, capable of evaluating the emission reduction 

potential of decarbonization measures and the dynamics involved in the implementation 

process to timely reach the established goals. The objective and research questions for 

this study are also presented, as well as the structure of the dissertation. 

 

1.1 Background and motivation 

Freight transport is a key element of supply chains and a reflection of a dynamic economy. 

Being almost exclusively powered by fossil fuels, it brings environmental negative 

externalities. Global freight transport was the source of 2.9 billion tons of carbon dioxide 

(CO2) emissions in 2015 (or more than 7% of global emissions), which is expected to 

more than double by 2050 if business continues as usual (INTERNATIONAL 

TRANSPORT FORUM – ITF, 2019). Advanced technologies and green practices to 

improve freight transport energy efficiency exist, but they are not being deployed nearly 

fast enough to deliver the savings needed to meet climate targets in the face of increasing 

demand (ITF, 2019; INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE – 

IPCC, 2019). Without a widespread and concerted effort, freight transport is set to 

overtake energy as the most carbon-intensive sector by 2040 (GREENE and FAÇANHA, 

2019). 

While fossil fuel use by passenger vehicles is trending downward, fuel consumption and 

emissions from freight are on the rise (FRIDELL et al., 2019). An analysis of long-term 

carbon reduction plans for transport in 60 countries revealed that they referred three times 

more to passenger-related improvement measures than freight measures, even though 

freight transport accounts for 40% of transport’s CO2 emissions (GOTA et al., 2016) and 

road freight transport accounts for about 7% of the world’s energy-related CO2 emissions 

(KAACK et al., 2018). Achieving a more sustainable freight transport system is a world 

goal to reduce emissions, improve human health and reduce negative environmental 

impacts (OLSSON et al., 2015). 
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Emissions reduction from freight transport can be achieved by combining different 

decarbonization measures or policies, such as the modal shift to more sustainable modes, 

increasing vehicle energy efficiency, using low or zero-carbon fuels, and improving the 

operational efficiency of the freight logistics (KAACK et al., 2018; MCKINNON, 2018). 

This is only possible with top-down interventions since the freight transport sector 

represents a complex social, technical, and economic system, which depends on 

government actions, different policymakers, and stakeholders to be adapted, changed, or 

innovated (GOLDMAN and GORHAM, 2006). Enforcement laws, for example, are a 

way to trigger a transition and to improve the sector in different areas such as technology, 

efficiency, and emissions (GUDMUNDSSON et al., 2016). In this thesis, the 

decarbonization measures are also referred to as policy measures, independently of the 

specific stakeholders responsible for the implementation of the actions.  

Given the carbon reductions required for the next few decades, decarbonization must be 

approached systematically, fully exploiting all the opportunities. No single technology, 

software tool, or business practice has the potential to cut emissions by the required 

amount (MCKINNON, 2018). There are, fortunately, a multitude of strategies that 

businesses can do to reduce the carbon footprint of their logistics operations, offering 

flexibility and diversity, but also making the development of a decarbonization strategy 

more complex. For example, stakeholders must understand the variables of the logistics 

set to provide infrastructure, tools, policies, and decisions capable of enabling national 

production and movement, by managing them in a socially and environmentally 

appropriate manner. This logistics set can be seen as a complex system involving 

feedback responses with different time lags between each agent’s decisions 

(SHEPHERD, 2014). According to ABBAS and BELL (1994), three main areas change 

dynamically in transport systems: the travel demand; the technology and level of supply 

of transport services and facilities; and the evaluation criteria on which decision-making 

is based. The evolution over time of the freight transport system is taken into account by 

stakeholders who take decisions according to the system’s changes. The system 

intervention may create unanticipated side effects, leading to resistance, and the tendency 

for interventions to be delayed, diluted, or defeated by the response of the system 

intervention itself (MEADOWS, 1982), impacting the evolution of the system in many 

directions.  
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Thus, besides the mechanisms to decarbonize freight transportation, we must also 

understand the internal dynamics involved in this process, how long they take their effects 

in different scenarios to improve the forecasting and planning of freight transport 

decarbonization strategies within the time frames imposed by the urgency to reduce 

global emissions. 

Since freight transport represents a multi-dimensional system, discrete modeling 

approaches do not cater to the dynamic interactions that exist between its elements, so a 

system-based approach, with an efficient procedure for representing, analyzing, and 

planning complex systems, is needed. For this purpose, System Dynamics (SD) method 

stands out due to its adequacy for investigating the impact of policies and strategies over 

continuous time taking into account the dynamic complexity of feedback loops structured 

systems (MAALLA and KUNSCH, 2008; YLÉN and HÖLTTÄ, 2007). ABBAS and 

BELL (1994) presented the advantages as well as the limitations of using SD as a 

modeling framework for transportation systems and stated that SD should be applied in 

strategic studies that are concerned with policy analysis and decision-making in the field 

of transportation. 

 

1.2 Research objective and research questions 

The previous subsection presented the problem and the variety of policy measures for 

freight transport decarbonization. It indicates that for the successful solution of freight 

transport emissions-related problems, we need to understand the dynamics of the freight 

transport system. This is possible by mapping the system structure and feedback loops, 

the interactions between stakeholders’ decisions that potentially change the current status 

of the system. The System Dynamics approach is suited for understanding the 

complexities of the freight transport system. Using this technique, we can model and map 

the details of continuously and dynamically changing characteristics of the freight 

transport system decarbonization. In this dissertation, the objective is folded out in the 

form of research questions where each question represents a specific research direction. 

By exploring these research directions, this Ph.D. dissertation will evaluate their 

importance and incorporate them into the model development framework. 

Accordingly, the focus of this research is to analyze the dynamics of the freight transport 

system toward decarbonization. So, we aim to integrate the important aspects of modeling 
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and provide a practical guide for the development of a well-articulated and feasible 

system dynamics model for the freight transport decarbonization domain. 

With the scope of the research defined, we formulate the objective of the dissertation as: 

“To analyze the dynamics that govern the time response of the freight transport 

system towards decarbonization.” 

Freight transport decarbonization has generated interest among the government, 

researchers, companies, and environmentalists. Studies and analysis are aimed at gaining 

a better knowledge of the dynamics of the freight transport domain to solve emissions-

related problems. The review of the methodical approaches for model and solving these 

problems can critically summarize the current knowledge, identify strengths and trends 

of the research in the field and detect the unattended gaps.  

The freight transport decarbonization system depends on and involves decisions related 

to the demand for goods, the transport infrastructure to be used, the efficient use of vehicle 

fleets, the energy efficiency, and the fuels used. Although these decision spheres impact 

each other, current models deal with them isolated and researchers have not yet fully 

succeeded in understanding the dynamics between them within the freight transport 

decarbonization system. Using the reviewed modeling efforts from this domain, we can 

explore the limitations, and identify missing links and dynamics knowledge in the current 

models. Hence, the first research question is: 

I. What are the gaps in the dynamics of freight transport 

decarbonization research? 

Many researchers, modelers, and real-world stakeholders explain their mental models of 

the same process or entity in different ways. For a better understanding and a more 

efficient information exchange, a common mental model helps to communicate the 

information without ambiguity. For this reason, an efficient mechanism is needed to 

explore the dynamics of the freight transport system. In the wake of this need, the next 

research question is: 

II. How can we conceptually model the dynamics of the freight transport 

system to decarbonization measures? 

In this sense, Systems Dynamics can capture rebound effects, contributing to the 

understanding of how the elements interact in a system. These models are based on Causal 
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Loop Diagrams (CLD) which represent, in a qualitative way, how the variables change 

and affect each other over time. The quantitative components of the Stock and Flow 

Diagrams can be added in the form of rules of the evolution of the system which can be 

stocks and flows, delays, and dynamic levers aiming at explaining and predicting the 

evolution of a dynamic system in the long run. The insights gained from such a model 

can be used to create a knowledge base of the system and its emerging patterns for 

generating appropriate solutions to the problems associated with freight transport 

decarbonization. 

The freight transport decarbonization system includes a variety of economic, social, legal, 

and technological aspects. In this situation, it is essential to draw the boundary on the 

amount of detail to be included in the model. This choice is dependent on the required 

precision of the model which, in turn, is directly related to the type of information and 

knowledge that is required. Thus, there are many different ways in which an SD model 

can be developed for the freight transport decarbonization system. Therefore, the next 

important research question is: 

III. How can we quantitatively model the multiple dynamics of the freight 

transport decarbonization system? 

The freight transport system is a complex sector to decarbonize with a large number of 

heterogeneous stakeholders. Successful decarbonization measures implementation 

should take into account the internal dynamics of the system. However, it is a challenging 

task to determine the precision required to model such a system, and based on the 

complexity desired, some assumptions are unavoidable in this context. 

 

1.3 Dissertation structure 

The dissertation structure is presented in Figure 1.1. 

 
Figure 1.1 – Dissertation structure. 
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Chapter 1 presents a general introduction to the freight transport domain by discussing 

the environmental problems associated with its emissions and possible decarbonization 

measures. Finally, the chapter introduced the research objective and associated research 

questions, besides the dissertation structure. 

Chapter 2 is a paper published in the Sustainability journal (see GHISOLFI et al., 2022a). 

It reviews the literature regarding the system dynamics models addressing freight 

transport decarbonization systems. The chapter presents the motivation for the review and 

the review itself is presented which is followed by a discussion of the results. The chapter 

concludes by giving an overview of the trends and gaps in the dynamics of freight 

transport decarbonization modeling to answer the first research question of the 

dissertation. 

Chapter 3 is a paper published in the Journal of Simulation (see GHISOLFI et al., 2022b). 

It proposes a conceptual model for the freight transport decarbonization system through 

causal loop diagrams. The chapter details the dynamics of the system bringing a broad 

view with five decarbonization measures, the feedback loops among their components, 

and the dynamic levers that govern the time response of the system to the policy 

instruments applied. This chapter answers the second research question of the 

dissertation.  

Chapter 4 is in a paper format and it will be submitted to a scientific journal. It deals with 

the quantitative modeling of the freight decarbonization system through stock and flow 

diagrams which, along with its structures, time delays, and nonlinearities; determine its 

dynamics. As the feedback loops interact, the dynamics are not intuitive and computer 

simulation is used to deduce the model behavior. The model is applied to the case study 

of the Brazilian freight transport system. Then, it is tested and submitted for sensitivity 

analysis. Results are presented and discussed. The third research question of the 

dissertation is answered by this chapter and its supplementary material (model equations, 

policies equations, and model results) are presented in Appendices A, B, and C.  

Chapter 5 presents the conclusions, limitations, and suggestions for future research. 

Figure 1.2 shows the research framework relating the research questions with each 

chapter, their specific research objectives, and the general objective. 
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Figure 1.2 – Research framework. 
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2 Freight transport decarbonization: a 

systematic literature review of system 

dynamics models 

This chapter presents a systematic literature review of system dynamics models related 

to freight transport decarbonization systems. Published in the Sustainability journal 

(GHISOLFI et al., 2022a), we chose to keep the structure, form, and text as close as 

possible to the published paper. Firstly, we present the motivation, then the review of the 

models is presented and the results are discussed. The chapter concludes by giving an 

overview of the trends and gaps in the dynamics of freight transport decarbonization 

modeling. 

 

2.1 Introduction 

The freight transport sector contributes to resource consumption, pollution, and climate 

change, mainly due to the increasing demand for, and burning of, fossil fuels (THE 

WORLD BANK, 2017). Road freight alone accounts for about 7% of the world’s energy-

related carbon dioxide (CO2) emissions (KAACK et al., 2018), with a likelihood of 

increasing in the future despite progress in mobility electrification. This continued growth 

in emissions is mainly due to globally increasing consumption and, therefore, an increase 

in freight trips, which are still primarily based on internal combustion vehicles 

(INTERNATIONAL ENERGY AGENCY – IEA, 2019). 

Decarbonization of the transport sector can only be achieved by combining several 

strategies with top-down policies (KAACK et al., 2018). The green logistics framework 

presents five strategies as the forward path to decarbonizing freight transportation 

(MCKINNON, 2018): (1) reducing freight transport demand; (2) shifting freight to lower-

carbon transport modes; (3) improving assets utilization; (4) increasing energy efficiency; 

(5) switching to lower-carbon energy. Different policy instruments deal with the 

implementation of each decarbonization strategy. Modal shift, for example, can be 

achieved by employing fiscal measures (e.g., rail freight funding), regulatory measures 

(e.g., regulation of truck weight or size), and infrastructure investment (BICKFORD et 
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al., 2014). Regardless of the decarbonization strategy adopted, decision-makers must be 

aware that their policies, decisions, and actions may have second-order effects on the 

system, leading to the need for a macro view that enables addressing the problem in a 

systemic and integrated way. 

To illustrate the problem, in some countries, the discussion focuses on using larger and 

heavier trucks to transport more freight instead of shifting to rails or waterways (IEA, 

2017). Increasing the payload of trucks can decrease environmental impacts, as evidenced 

by a case study in China (HAO et al., 2012), and operating costs of the road mode by ton-

km, as evidenced by the case study of the transport of ornamental stones in Brazil 

(GHISOLFI et al., 2019). However, the efficiency increase leads to a rebound effect over 

freight transport demand (JONG et al., 2010), worsening the system’s general state. This 

example demonstrates that a change in the vehicle system, without considering the freight 

demand mechanism, may not achieve the expected goal. Moreover, reducing road freight 

operating costs discourages the modal shift to cheaper modes, such as rail and waterways 

(IEA, 2017), which can hinder achieving global environmental goals imposed by climate 

change. On the other hand, if transport agents direct efforts toward a modal shift from 

road to rail, they must consider possible reactions from road haulers. Otherwise, the 

existing economic competition can undermine rail operations, whose competitive 

advantage depends on a constant freight flow. Freight transport decarbonization is a 

dynamic, complex system; in the decision-making process, one strategy may impact the 

other.  

Besides the impacts of second-order effects, the system’s dynamics are also determined 

by the speed of change of its subsystems, i.e., the time that each decision or action takes 

to be implemented and take effect. In this sense, developing cleaner technologies and 

alternative fuels are relevant strategies for freight decarbonization, but knowing how long 

these technologies will take to be adopted by transport companies and used on a large 

scale is critical for crafting more realistic decarbonization targets and addressing the 

problem more efficiently. For example, in Brazil, ethanol and biodiesel have a long 

trajectory as national fuels, which were initially used to reduce dependence on oil imports 

during the oil crisis in the 1970s. In later decades, the ethanol and biodiesel industries 

suffered several political and economic impacts that delayed their full development 

(JONG et al., 2021). Currently, the legislation requires the use of a minimum of 27% 
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ethanol in gasoline and 10% biodiesel in diesel (PETRÓLEO BRASILEIRO – 

PETROBRAS, 2022), failing to meet previously established targets. 

Given the presented context, TAVASSZY (2020) highlights the importance of studies 

involving time-definite policy objectives and their impacts on the dynamics of freight 

systems. The system dynamics (SD) modeling approach is suitable for investigating the 

effects of policies and strategies over a continuous time in complex systems (MAALLA 

and KUNSCH, 2008; YLÉN and HÖLTTÄ, 2007). SD has been a powerful tool for 

policymakers to predict system changes and future scenarios in different contexts, the 

most well-known being the Limits to Growth study by the Club of Rome in 1972 

(MEADOWS et al., 2004). ABBAS and BELL (1994) were the first to discuss and 

evaluate the strengths and weaknesses of SD concerning its suitability and 

appropriateness for transportation systems modeling, pointing out that it is well suited for 

modeling strategic issues and supporting policy analysis and decision-making processes. 

In SHEPHERD (2014), a review of SD studies was presented, categorizing them by area 

of application in transportation studies and summarizing insights and recommendations 

for future application of the SD approach in this field. Interestingly, SHEPHERD (2014) 

mentioned just one study related to freight transport and environmental impacts. The 

discussion about alternative fuel vehicles was kept around the passenger transport system, 

which shows the lack of sufficient research in freight transport and decarbonization with 

this approach.  

Other literature reviews on specific strategies of transport emission mitigation generally 

cover only a very particular component of the system or the measures to reduce emissions. 

SD models regarding alternative powertrain technology, particularly electric vehicles, 

have been reviewed by VILCHEZ and JOCHEM (2019), evidencing that the models 

differ in purpose and assumptions, particularly about consumer choice of powertrains. 

GNANN and PLÖTZ (2015) reviewed different modeling approaches, which focused on 

the interaction of the market diffusion of alternative fuel vehicles and their refueling 

infrastructure; dynamics for truck fleet change were not considered. Some authors 

reviewed top-down and bottom-up models for carbon emissions measurement from road 

traffic (MCKINNON and PIECYK, 2009; DEMIR et al., 2011; DEMIR et al., 2014; 

ZHANG et al., 2019) and summarized the main factors influencing traffic carbon 

emissions, including vehicle speed, load, acceleration, and road slope. FONTOURA and 

RIBEIRO (2021) reviewed SD models in developing and implementing urban policies 



 

11 
 

focused on sustainable transportation, specifically the economy, environment, land use, 

social, and traffic congestion policies for motorized and non-motorized modes. REBS et 

al. (2019) provide a review of sustainable supply-chain-management-related SD models, 

including forward, reverse, and closed-loop supply chains that include environmental or 

social aspects of sustainability. Interestingly, none of these literature reviews covered the 

dynamics involved in a broad range of decarbonization strategies for freight 

transportation. The time dependency of measures and their impacts are modeled in some 

cases but not explicitly discussed as a component of the policies under investigation. 

Considering the importance of decarbonizing freight transport and SD’s contribution to 

its dynamic analysis, the absence of a review dedicated to this problem motivated this 

study. The research question is: How have the dynamic aspects of freight transport 

decarbonization systems been modeled using the system dynamics approach? This 

systematic literature review aims to identify the feedback responses that have been 

modeled, how the dynamics have been addressed by SD models so far, and what research 

is still necessary to improve the representation of decarbonization pathways with SD 

models. To accomplish this objective, the remainder of this chapter is organized as 

follows. Section 2.2 details the methods adopted in this systematic literature review. 

Section 2.3 presents the main results according to different decarbonization strategies. 

Finally, Section 2.4 sets out the final remarks of the chapter and indicates future research 

directions. 

2.2 Materials and Methods 

This chapter presents a systematic literature review focused on studies that evaluate 

decarbonization strategies for freight transport using an SD approach. PRISMA 

guidelines were used for the literature review process (MOHER et al., 2009). The 

portfolio was built in July 2021 using the Google Scholar database covering the available 

online journals, unpublished studies, conference proceedings, industry trials, technical 

reports, and similar publications, with neither time nor geographical constraints. Thus, 

criteria such as journal rankings were not used for exclusion purposes because this review 

aims to give a comprehensive overview of the system dynamics models of freight 

transport decarbonization. Moreover, other databases were not used to avoid repeated 

papers in the portfolio, considering that Google Scholar makes all electronic resources 

available (FALAGAS et al., 2007).  



 

12 
 

The search procedure was performed using the following keywords: “decarboni*”, 

“emission”, “freight transport *”, and “system dynamics”. The truncated words were used 

to obtain their possible variations and different spellings. The search resulted in 980 

studies. All repeated studies, books, and non-English materials were removed from the 

sample. Then, the inclusion criteria were checked by reading all the titles, abstracts, and 

keywords. Finally, the portfolio of studies to be reviewed and analyzed in more detail was 

obtained by applying the exclusion criteria. Figure 2.1 shows the flow diagram of the 

literature review process based on the PRISMA guidelines (MOHER et al., 2009). 

 
Figure 2.1– Flow diagram of the systematic literature review proceeding according to PRISMA. 

Source: MOHER et al. (2009). 

In the first screening step, we applied the inclusion criteria to select papers containing 

system dynamics models regarding the freight transport sector and emission issues or 

decarbonization strategies, which resulted in 740 exclusions and 111 publications being 

assessed for eligibility. In the second screening step, despite citing freight transport, a few 

studies were identified concerning passenger transport and were disregarded for review 

by applying the exclusion criteria. Specific and well-established models, such as ASTRA 

and ESCOT, were used in many case studies; however, only the studies regarding the 
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models’ development were included instead of all their case study applications. The 

literature-review-selected papers were already described in Section 2.1. In summary, 50 

studies of decarbonization strategies for freight transport using the SD approach remained 

in the portfolio to be reviewed in the following section. 

The papers were identified and analyzed by each decarbonization strategy. Different 

frameworks support managers and policymakers in conceptualizing and formulating 

coherent decarbonization strategies to assess various drivers and opportunities for 

reducing emissions. The green logistics framework (MCKINNON, 2018) was used 

because it includes a wide range of aspects of freight transport with five strategies: (i) 

reducing freight transport demand – within the bounds of logistics management, this 

involves reducing the freight transport intensity of economic activity; (ii) shifting freight 

to lower-carbon transport modes – taking advantage of the wide variations in carbon 

intensity between modes; (iii) improving assets utilization – using vehicle and warehouse 

capacity more effectively; (iv) increasing energy efficiency – reducing energy 

consumption relative to freight ton-km and warehouse throughput; (v) switching to lower-

carbon energy – reducing the carbon content of the energy used in logistics. This 

framework incorporates diversified approaches in multi-disciplinary green road freight 

transportation research (MEYER, 2020).  

Besides the green logistics framework, the TIMBER (an acronym for technology, 

infrastructure, market, behavior, energy, and regulation) framework (MCKINNON, 

2018) was also used to identify external forces needed to support the previous strategies. 

In addition to decarbonization strategies and the necessary external factors to support 

them, the policy instruments simulated in the SD models were also identified. Four policy 

categories were considered based on STELLING (2014): economic, legal, knowledge-

based, and societal instruments. Economic instruments concern internalizing external 

costs by imposing taxes, charges, fees, tax exemptions, subsidies, etc. Legal instruments 

are laws, regulations, and norms, such as size and weight restrictions of vehicles, 

obligation schemes of fuel composition, maintenance, and performance-based standards. 

Knowledge-based instruments are information and research and development (R&D). 

Information can influence behavior and knowledge, hence increasing the acceptance of 

other instruments. R&D relates to creating and finding new solutions, such as improving 

energy efficiency and making transport independent of fossil fuels. Finally, societal 

instruments are infrastructure investments in alternative modes, carbon-neutral 
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techniques, such as electrical roads, and infrastructure for loading/filling up electric or 

hydrogen-gas-driven vehicles. Figure 2.2 depicts the interactions between external 

factors, decarbonization strategies, and policy instruments identified in the SD models. 

 
Figure 2.2 – Relations between external factors, decarbonization strategies, and policies.  

Source: based on MCKINNON (2018). 

The following section describes the SD models and dynamics of freight transport 

decarbonization. The dynamic aspects assessed in the SD models included assumptions 

made to build the feedback loops, causal loop diagrams, stock and flow diagrams, time-

related variables, or delay equations. These factors influence the system’s behavior over 

time and the results achieved in the long term. 

2.3 Results 

This section discussed and analyzed the selected papers to construct a view of the state-

of-the-art factors in modeling freight transport decarbonization using SD. Table 2.1 

presents the selected studies, their case study, geographic level, simulation period, SD 

software used, and whether or not the model diagrams (causal loop diagrams – CLD and 

stock and flow diagrams – S and F) were fully or partially presented. 

Table 2.1 – Studies of SD models for decarbonization of freight transportation. 

Study Case Study 
Geographic 

Level 

Simulation 

Period1 
Software Model 

AGHA et al. (2019) Iran Nation/Region 2009–2034 Vensim ✓ 

ASCHAUER (2013) Qualitative Nation/Region - Stella ✓ 

ASCHAUER et al. (2015) Generic Nation/Region 10 years Stella ✓ 

AZLAN et al. (2019) Malaysia Nation/Region 1990–2016–2040 Powersim ✓ 

BARISA and ROSA (2018a) Latvia Nation/Region 2013–2030 Powersim 
S and F 

* 

BARISA and ROSA (2018b) Latvia Nation/Region 2016–2030 Powersim CLD 

CAGLIANO et al. (2015a) Italy Urban 120 months Vensim CLD 

CAGLIANO et al. (2015b) Italy Urban 120 months Vensim CLD 

CAGLIANO et al. (2017) Italy Urban 120 months Vensim ✓ 
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Study Case Study 
Geographic 

Level 

Simulation 

Period1 
Software Model 

CHOI et al. (2019) South Korea Nation/Region 100 months Vensim ✓ 

BRITO JUNIOR et al. (2011) Brazil Nation/Region 2010–2025 Vensim ✓ 

DOLL et al. (2010) Europe Nation/Region 2005–2025 
Not 

specified 
- 

DONG et al. (2019) China Urban 2017–2035 Vensim ✓ 

ERDMANN et al. (2004) EU15 Nation/Region 2000–2020 Powersim - 

FIORELLO et al. (2010) Europe Nation/Region 1990–2050 Vensim - 

FREEMAN et al. (2015) UK Nation/Region 1970–2010–2030 Vensim ✓ 

GENG et al. (2017) China Nation/Region 2015–2025 Vensim ✓ 

HADDAD et al. (2019) Lebanon Nation/Region 2010–2040 Vensim 
S and F 

* 

HAMOUDI et al. (2021) Generic Nation/Region 10 years Vensim ✓ 

HAN and HAYASHI (2008) China Nation/Region 2000–2020 
Not 

specified 
✓ 

HIDAYATNO et al. (2019) Qualitative Urban - Vensim CLD 

HILTY et al. (2006) EU15 Nation/Region 2000–2020 Powersim - 

HU et al. (2019) China Urban 2007–2035 Vensim ✓ 

HUANG et al. (2021) China Nation/Region 2001–2019 Vensim ✓ 

KAR and DATTA (2020) Qualitative Nation/Region - Vensim CLD 

KRAIL and KÜHN (2012) Germany Nation/Region 2009–2050 
Not 

specified 
- 

KUNZE et al. (2016) Qualitative Urban - Anylogic 
S and F 

* 

LEWIS et al. (2014) Qualitative Nation/Region - Stella CLD 

LEWIS et al. (2015) Qualitative Nation/Region - 
Not 

specified 
- 

LIU and MU (2015) China Nation/Region 2015–2024 Vensim - 

LIU et al. (2017) China Nation/Region 2016–2025 Vensim - 

LIU et al. (2019) China Nation/Region 2008–2030 
Not 

specified 
- 

LIU et al. (2021) China Nation/Region 2020–2035 Vensim - 

MELKONYAN et al. (2020) Austria Urban 2018–2030 Vensim ✓ 

MENEZES et al. (2017) Brazil Urban 2010–2040 Vensim - 

OUMER et al. (2015) Generic Nation/Region 15 months iThink  

PURWANTO et al. (2011) Global Nation/Region 2000–2050 Vensim CLD * 

ROZENTALE et al. (2020) Latvia Nation/Region 1990–2050 Stella 
S and F 

* 

SCHADE and SCHADE (2005) Germany Nation/Region 1990–2030 
Not 

specified 
- 

SEITZ (2014) Qualitative Nation/Region - Vensim CLD 

SEITZ and TERZIDIS (2014) Germany Nation/Region 2010–2035 Vensim CLD 

SETIAWAN et al. (2019) Indonesia Nation/Region 2020–2050 Vensim CLD * 

SHAFIEI et al. (2014) Iceland Nation/Region 2012–2050 
Not 

specified 
- 

SIM (2017) South Korea Nation/Region 2015–2030 Vensim ✓ 

THALLER et al. (2016) Qualitative Urban - Vensim ✓ 

THALLER et al. (2017) Qualitative Urban - Vensim CLD 

WANG et al. (2020) China Nation/Region 1999–2017 Vensim ✓ 

YORK et al. (2017) 
South 

Africa 
Nation/Region 2001–2040 Vensim - 

ZENEZINI and MARCO 

(2020) 
Generic Urban 100 months Vensim ✓ 

ZHANG et al. (2019) China Urban 2018–2022 Vensim CLD 

1 The first range refers to a simulation run with historical data for validation purposes, and the second refers 

to future simulations. ✓ All diagrams presented; CLD *—causal loop diagram partially presented; S and F 

*—stock and flow diagram partially presented. 
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Table 2.2 summarizes the classification of the studies according to the green logistics 

framework, where decarbonization strategies correspond to (1) reducing freight transport 

demand; (2) shifting freight to lower-carbon transport modes; (3) improving assets 

utilization; (4) increasing energy efficiency; (5) switching to lower-carbon energy. The 

TIMBER framework refers to (T) technology; (I) infrastructure; (M) market; (B) 

behavior; (E) energy; (R) regulation, and policies related to (ECO) economic; (SOC) 

social; (LEG) legal; and (KNL) knowledge-based instruments. 

As shown in Table 2.2, none of the studies simultaneously addressed the five 

decarbonization strategies. The most common decarbonization strategy for freight 

transport considered in the SD models is mode shift, with 15 models concerning this 

measure and 11 studies considering it a secondary option. Analyzing external forces, a 

high dependence on the infrastructure factor to implement this strategy can be observed. 

Social policy regarding infrastructure investments is usual among these models, although 

other policies are also applied, such as economic incentives, taxation, technologies, and 

legal requirements.  

The second most common decarbonization strategy addressed by 13 SD models is 

alternative fuels, with the other seven models considering this measure in conjunction 

with different strategies. As expected, the principal external forces needed to implement 

this strategy are technology and energy availability, although infrastructure availability 

and market acceptance are also of concern. The policies simulated in the models are 

mostly related to economic incentives (subsidies for alternative fuels, taxes on fossil fuels, 

and others) and knowledge-based investments in the R&D field. Social and legal policies 

were also found regarding refueling/recharging infrastructure investments and obligation 

schemes, such as blend targets (i.e., biodiesel with diesel). 

Vehicle and asset utilization appear in eight SD models, and seven studies cite this as a 

secondary decarbonization strategy. Behavior is the main external force supporting this 

strategy. It depends on the business culture and willingness to establish partnerships for 

sharing assets, logistics centers, warehouses, transport infrastructure, load optimization, 

and consolidation. Policies simulated in the SD models include economic incentives to 

improve efficiency and encourage companies with financial benefits. Infrastructure and 

technology investments, as well as legal requirements, were also considered. 
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Table 2.2 – Identification of decarbonization strategies, external forces, and policy instruments. 

Study 
Decarbonization Strategies1 

External 

Forces2 
Policies3 

1 2 3 4 5 T I M B E R ECO SOC LEG KNL 

AGHA et al. (2019) x4       x    x    

ASCHAUER (2013)  x x    x  x   x    

ASCHAUER et al. (2015)  x x    x  x   x    

AZLAN et al. (2019) x x  x  x x     x x  x 

BARISA and ROSA (2018a)  x   x x x x x x  x   x 

BARISA and ROSA (2018b)  x   x x x x x x x x x x x 

CAGLIANO et al. (2015a)    x x x x x x x  x x   

CAGLIANO et al. (2015b)    x x x x x x x  x x   

CAGLIANO et al. (2017)    x x x x x x x  x x   

CHOI et al. (2019)  x    x x  x   x x  x 

BRITO JUNIOR et al. (2011)  x     x      x   

DOLL et al. (2010)  x x    x    x x  x  

DONG et al. (2019)  x     x  x    x   

ERDMANN et al. (2004) x     x  x x      x 

FIORELLO et al. (2010)  x   x x x   x  x x  x 

FREEMAN et al. (2015) x   x  x    x  x   x 

GENG et al. (2017)    x x x   x x     x 

HADDAD et al. (2019)  x   x x x   x  - - - - 

HAMOUDI et al. (2021) x  x      x   x   x 

HAN and HAYASHI (2008)  x     x    x x x   

HIDAYATNO et al. (2019) x  x     x    x    

HILTY et al. (2006) x     x  x x      x 

HU et al. (2019)  x     x  x   x x   

HUANG et al. (2021)  x     x    x x x   

KAR and DATTA (2020) x  x   x  x    x   x 

KRAIL and KÜHN (2012)    x x x  x x x  x    

KUNZE et al. (2016) x     x  x  x x x  x  

LEWIS et al. (2014)  x  x  x x x x x   x  x 

LEWIS et al. (2015)  x  x  x x  x    x   

LIU and MU (2015)   x    x    x  x x  

LIU et al. (2017)  x x x   x    x  x x  

LIU et al. (2019)  x x x   x    x  x x  

LIU et al. (2021)  x     x      x   

MELKONYAN et al. (2020) x  x   x  x x    x  x 

MENEZES et al. (2017)    x x x  x  x x x  x x 

OUMER et al. (2015)   x   x   x      x 

PURWANTO et al. (2011)  x x  x x    x x x  x x 

ROZENTALE et al. (2020)  x   x x x   x   x  x 

SCHADE and SCHADE 

(2005) 
x x x x x x x x x x x x x  x 

SEITZ (2014)    x x x x x  x x x x  x 

SEITZ and TERZIDIS (2014)    x x x x x  x   x  x 

SETIAWAN et al. (2019)  x  x x x x   x  - - - - 

SHAFIEI et al. (2014)    x x x x x  x  x   x 

SIM (2017)  x x  x x x   x  - -  - 

THALLER et al. (2016) x       x    - - - - 

THALLER et al. (2017) x      x x    - - - - 

WANG et al. (2020)  x  x x x x x x x x  x  x 

YORK et al. (2017)  x     x      x   

ZENEZINI and MARCO 

(2020) 
  x  x x   x x  x x   

ZHANG et al. (2019) x      x     - - - - 
1Where 1-demand reduction; 2-mode choice; 3-assets utilization; 4-energy efficiency; 5-alternative fuels. 
2T-technology; I-infrastructure; M-market; B-behavior; E-energy; R-regulation. 3ECO-economic; SOC-

social; LEG-legal; KNL-knowledge-based instruments. 4Shading highlights the main decarbonization 

strategy in the respective model. 
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Reducing or managing the freight transport demand is the decarbonization strategy of 10 

SD models and appears in four other studies as a secondary measure. The external force 

that supports this strategy is market acceptance, as freight transport demand is highly 

related to consumption patterns and prices that will affect demand according to the price 

elasticities of each product category. The policies simulated are related to economic 

measures, increasing fees and transport costs, reducing goods and transport demand, and 

knowledge-based instruments, for instance, simulating the impacts that information and 

communication technologies will have on freight transport demand. 

Lastly, four SD models presented the strategy of improving vehicle efficiency, with 14 

other studies considering it secondarily. Similarly to alternative fuel promotion, the 

implementation of this strategy requires the availability of technology and energy as 

external forces. Market acceptance, infrastructure, behavior, and regulation are of minor 

concern in these models. Simulated policies include knowledge-based instruments with 

technology investment, social instruments with infrastructure investment, and economic 

instruments with incentives to adopt innovation and discourage old and outdated 

technologies. 

The following subsections are related to the specific decarbonization strategies of the 

green logistics framework, describing the main impact on mechanisms and pathways, 

including how models deal with dynamics aspects. 

2.3.1 Reducing Freight Transport Demand 

Reducing the freight transport demand requires a range of processes to minimize the 

physical amount of goods to be delivered, such as material efficiency, including making 

products last longer, recycling, digitization, designing products with less material, and 

postponement of product customization (MCKINNON, 2018). Other measures can 

include price increases, which affect transport demand according to cost elasticity. Table 

2.3 summarizes the SD models’ objectives, policy elements, contributions, and 

limitations for reducing freight transport demand. 

Table 2.3 – Contributions of the SD models for reducing freight transport demand modeling. 

Authors Objectives 
Policy 

Elements 
Contributions Limitations 

ERDMANN  

et al. (2004); 

HILTY et al. 

(2006) 

To assess the influence 

that information and 

communication 

technologies (ICTs) 

Investment  

in new 

technologies 

ICT-related efficiency 

improvements are not 

sufficient to stabilize freight 

demand and other demand-

side management policies  

The SD diagrams were 

not presented. There is 

no discussion about 

time responses or 

other dynamics of 
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Authors Objectives 
Policy 

Elements 
Contributions Limitations 

have on environmental 

sustainability 

are required policy implementation 

and their effects 

FREEMAN et 

al. (2015) 

To examine the 

dynamic relationship 

between the 

consumption of goods 

and services, 

technological 

efficiency, and 

associated resource use 

Investment in 

technological 

efficiency 

The fleet efficiency induces 

travel consumption and more 

CO2 emissions. Higher fleet 

efficiency requires costlier 

travel and a reduction in 

travel consumption 

It highlighted the need 

to implement a system 

of interventions; 

however, no details 

were described 

regarding the 

dynamics of such 

implementations 

KUNZE et al. 

(2016) 

To generate a holistic 

understanding of the 

potential to reduce 

freight transport 

demand 

Application 

of higher 

transport 

taxes 

Identifying the reinforcement 

loop, since economies of 

scale lead to more freight 

demand, and the balancing 

loop, as higher taxes 

discourage the freight 

demand increase 

The model requires 

further discussion, as 

well as validation and 

application 

THALLER et 

al. (2016; 

2017) 

To discuss the 

behavioral patterns and 

interdependencies of 

relevant stakeholders 

in the freight transport 

market at an urban 

level 

Not 

considered 

The focus was on the 

decision processes and 

behavior of the freight 

demand and the freight 

transport demand, which 

affects freight traffic and the 

environment at an urban level 

The model presents 

the effects of 

consumption patterns 

on freight transport 

demand but does not 

provide any policy 

instruments to manage 

or mitigate it 

AGHA et al. 

(2019) 

To model the effects  

of fuel price on 

intercity road traffic 

volume 

Increase in 

fuel prices 

The fuel price increase is not 

sufficient to reduce the 

transport demand due to 

population increase, positive 

economic growth, and 

investment in road 

infrastructure 

The dynamics of the 

market response, that 

is, the time lag that it 

would take between 

price increase and 

demand reduction, 

was not evidenced 

HIDAYATNO 

et al. (2019) 

Relates to the total CO2 

emissions generated 

through urban freight 

volume powered by e-

commerce growth 

Carbon  

tax 

internalization 

Development of feedback 

loops with general 

assumptions about freight 

transport demand variations 

The model was not 

simulated or validated. 

Time lag decisions 

and response delays 

were not considered 

ZHANG et al. 

(2019) 

Determines the causal 

relationship between 

road transport and 

social economy, 

population, passenger 

transport, freight 

turnover, and energy 

demand 

Not 

considered 

Predictions of the freight 

transport demand and CO2 

emissions simulating high 

and low levels of oil and gas 

resource and technology, oil 

price, and economic growth 

The model does not 

apply any 

decarbonization 

strategy, despite 

simulating the impact 

of transport demand 

increase over 

emissions 

KAR and 

DATTA 

(2020) 

Understanding of the 

relationship between 

product prices, fuel, 

number of vessels, 

freight, and weight 

value ratio 

Product  

prices and 

logistic costs 

variation 

This study shows that the 

cost of logistics has a 

significant impact on the 

demand for products with 

price elasticity greater than 

one 

The model does not 

consider the dynamics 

of relevant policies, 

such as logistics 

collaborations, 

partnerships, and 

vertical integration 

 

The models differ in terms of boundary delimitations, inputs, and outputs. Consequently, 

distinct structures of causal loop diagrams or stock and flow diagrams were found 
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according to their goals. ERDMANN et al. (2004) and HILTY et al. (2006) assessed the 

rebound effects of efficiency gained with information and communication technologies 

over freight demand stimulation, which counterbalances or even outweighs positive 

environmental benefits. 

As people get used to traveling more and having access to more goods due to gross 

domestic product (GDP) improvement, the social norm increases, influencing travel and 

consumption in a reinforcement feedback loop (FREEMAN et al., 2015). Moreover, as 

fleet efficiency increases, travel costs decrease, leading to a rebound effect on transport 

demand. On the other hand, road congestion limits the growth in transport demand. A 

high volume of urban transport will lead to more traffic and reduce environmental quality 

(KUNZE et al., 2016). It would require legal regulations (e.g., higher taxes) to reduce 

transport demand. On the other hand, if the freight transport volume is high, the efficiency 

of logistics operations is likely to grow, improving economic performance and increasing 

freight transport demand. 

THALLER et al. (2016; 2017) modeled the interdependencies of relevant stakeholders in 

the freight transport market. The main focus was on decision processes regarding freight 

demand (e.g., private households, retailers, and shippers) and the resulting freight 

transport demand of the logistics service provider, which affects freight transport volume, 

traffic, and environmental problems at an urban level. According to AGHA et al. (2019), 

the increase in fuel price affects per capita income, thereby reducing vehicle purchases. 

However, due to population increase, positive economic growth, and annual investment 

in road infrastructure, changes in the fuel price are not sufficient to reduce transport 

demand. 

According to HIDAYATNO et al. (2019), CO2 emissions are related to the urban freight 

volume powered by e-commerce. Their assumptions show that the urban freight volume 

will directly influence GDP, leading to higher product consumption, and e-commerce 

orders will likely increase, affecting urban freight volume in a reinforcing feedback loop. 

These factors will induce greater energy consumption and CO2 emissions, increasing 

urban logistics transport costs through the internalization of a carbon tax, resulting in a 

demand decrease.  

The GDP increases transport investment, which will decrease traffic congestion, energy 

consumption, and emissions, leading to an improvement in GDP (ZHANG et al., 2019). 
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Moreover, the increasing population will decrease GDP per capita, reducing the number 

of private cars, traffic volume, energy consumption, and emissions. It was also assumed 

that population growth would increase the use of non-motorized travel (ZHANG et al., 

2019), which is debatable since slow modes depend on land use and suitable 

infrastructure. KAR and DATTA (2020) assessed the dynamics between product prices 

and freight demand. The authors argued that the mark-up variation might further lead to 

an increase or decrease in prices, causing an inverse effect on product demand, which is 

also influenced by logistics costs.  

Despite the differences found in the presented literature, some usual variables and 

assumptions can be highlighted regarding the dynamic relationships in freight transport 

demand modeling that form the feedback loops in Figure 2.3. In a summarized form, 

emissions are affected directly by fleet efficiency and fuel consumption. Fleet efficiency 

depends on environmental regulations balancing freight emissions. However, fuel 

consumption varies according to transport demand, which is affected by other feedback 

loops, including those with delay effects. 

 
Figure 2.3 – Common dynamic relationships in freight transport demand modeling. 

Source: based on AGHA et al. (2019); FREEMAN et al. (2015); HIDAYATNO et al. (2019); KAR and 

DATTA (2020); THALLER et al. (2016; 2017); ZHANG et al. (2019). 

Regarding the quantitative and simulation aspects, most of the studies did not present the 

model equations, except for ZHANG et al. (2019), which makes it challenging to analyze, 

replicate, or apply the models. Moreover, there is no information about integration 

techniques or time steps used. Another difficulty is the identification of delays. Although 

some delays are represented in the diagrams (arrows with hash marks), their estimations 

were not provided. Other relevant measures, such as the internalization of emission costs, 

are supposed to take some time to be implemented; however, their delays were not even 
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pointed out in the diagrams. The discussion about time responses, an essential dynamic 

aspect, requires better exploration. 

2.3.2 Shifting Freight to Lower-Carbon Transport Modes 

It is important to increase the performance of railway, waterway, and combined 

multimodal transport in terms of the comparable price, quality, service, and flexibility of 

roadway transport to increase the use of alternative modes. Using synchromodality that 

focuses on the optimal and flexible use of multiple modes is expected to contribute to this 

solution area (ALLIANCE FOR LOGISTICS INNOVATION THROUGH 

COLLABORATION IN EUROPE – ALICE, 2019). Table 2.4 summarizes the SD 

models’ objectives, policy elements, contributions, and limitations for shifting mode 

modeling. 

Table 2.4 – Contributions of SD models for shifting freight to low-carbon mode modeling. 

Authors Objectives Policy Elements Contributions Limitations 

SCHADE 

and 

SCHADE 

(2005) 

To model the 

economic, transport, 

environmental, and 

policy aspects that 

describe a path 

toward a sustainable 

transport system and 

its economic impacts 

Higher transport 

prices (taxes); 

investment in 

alternative modes; 

investment in energy 

efficiency and 

alternative fuels 

The growth of freight 

transport tends to be 

absorbed by rail and ship 

transport since these 

modes are attractive 

enough 

The high aggregation 

level and the absence of 

the model feedback 

loops and related 

dynamics make it 

challenging to analyze 

the considered 

assumptions  

HAN and 

HAYASHI 

(2008) 

To assess the CO2 

emissions from an 

intercity freight 

transport considering 

the modal share, the 

freight volume, fuel 

price, and fuel 

intensity 

Extension of the 

railway and 

waterway network 

and imposition of 

fuel taxes 

Policies simulated are 

very significant for CO2 

emissions mitigation 

Dynamics of changes in 

the system were not 

provided, compromising 

the interactions between 

policies, mode choice, 

and emissions 

mitigation discussion 

BRITO 

JUNIOR et 

al. (2011) 

To analyze the causal 

relationships 

influencing the modal 

shift from road to 

coastal shipping 

Investment in 

infrastructure 

capacities and 

governmental 

pressure to reduce 

CO2 emissions 

Results show that the 

inertia for the modal  

shift is long 

It was not evidenced 

how the pressure to 

reduce CO2 emissions 

and shift modes was 

quantified. Other factors 

were not considered by 

the model, such as 

pricing policies, tax 

incentives, and subsidies 

to shift modes 

LEWIS et 

al. (2014; 

2015) 

To explore the 

strategies for 

greenhouse gas 

(GHG) emission 

reductions, with a 

specific focus on the 

mode switch from 

road to rail 

Increasing the fuel 

price, electricity 

price, carbon tax; 

investment in rail 

infrastructure; fleet 

efficiency 

Existence of different 

decision-making 

behaviors to adopt 

innovations, depending 

on the type and size of 

companies 

The congestion and 

capacity constraints 

were not considered, as 

well as the assumptions 

related to time responses 
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Authors Objectives Policy Elements Contributions Limitations 

YORK et 

al. (2017) 

To investigate the 

infrastructure 

implications of a 

green economy 

transition for a modal 

shift from road to rail 

Increasing 

investments in the 

rail network 

The benefits obtained 

include the reduction in 

trucks using the road 

network, better  

pavement conditions,  

and road safety. Such a 

transition would require 

significant investment in 

the rail track 

It was not discussed 

how the modal shift 

would be implemented 

by companies over time 

AZLAN et 

al. (2019) 

To propose an SD 

model for emission 

analysis of intercity 

highways, including 

both passenger and 

freight transport 

Increasing fuel 

prices, promoting 

alternative modes, 

such as railway,  

and educating 

drivers to plan  

their routes and 

schedules  

The results showed a 

reduction in total CO2 

emissions with the 

policy’s implementation 

The model does not 

show the feedback 

loops. There is no 

mention of time lags 

regarding mode choice 

changes, or the adoption 

of intelligent systems 

for route planning, 

compromising policy 

evaluations 

CHOI et al. 

(2019) 

Develop an SD  

model to examine  

the impact of  

policies of modal 

shift from road to rail 

Increasing road  

costs or taxation  

and  

containerization  

Results confirmed that 

the modal shift by 

containerization  

occurred more rapidly 

than by all kinds of road 

taxation  

Warehousing and 

information costs of 

transshipment were 

excluded. Dynamics 

were not analyzed 

DONG et 

al. (2019) 

To analyze the 

quantitative 

relationship between 

the mode shift from 

road to rail and the 

sustainability of  

urban logistics 

Investment in 

railway 

infrastructure 

construction 

The high-density 

development of the rail 

network will achieve the 

best indicators of 

performance (average 

speed, congestion loss, 

delivery travel time, and 

emissions) 

Lack of detailed 

analysis of the network 

construction time, the 

secondary benefits, such 

as land appreciation and 

road safety, as well as 

the cost-benefit analysis 

for the construction of 

the rail network 

LIU et al. 

(2017; 

2019;  

2021) 

Evaluate alternative 

modal shift policies  

to eliminate 

overloaded trucking 

and increase 

sustainability 

Legal weight 

regulation and 

investment in 

railway 

infrastructure 

The weight regulation 

causes a higher total  

cost. Constructing a 

railway to shift freight 

away from highways is 

an effective option to 

achieve increasing 

sustainability  

Some delays are 

assumed for model 

simplification without 

suitable discussion. 

Policies and their effects 

are fixed throughout the 

simulation period, 

which is unrealistic 

HU et al. 

(2019) 

To simulate logistics 

activities integrated 

into urban passenger 

rail transit networks 

Different levels of 

infrastructure 

investment policy, 

network scale, and 

market 

competitiveness 

through price 

adjustments 

The urban freight railway 

significantly decelerates 

the growth trend of 

external costs. However, 

due to the limited 

capacity of the system 

and the ever-growing 

urban demand, it is not 

sufficient to mitigate all 

externalities  

Lack of analysis of 

multimodal transport 

system, reduction in 

truck damage to roads, 

and the benefits of land 

conservation, as well as 

the dynamics related to 

the policies simulated 

WANG et 

al. (2020) 

To explore transport 

decarbonization 

considering 

economic, social, 

environmental, and 

transportation 

elements 

Increase the use of 

alternative modes 

and optimize energy 

consumption 

through 

technological 

innovations 

The results indicate that 

the mode shift is the 

most significant measure 

to reduce emissions 

Dynamics for mode 

shift, such as company 

change requirements 

and time-lag responses, 

were not taken into 

account 
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Authors Objectives Policy Elements Contributions Limitations 

HUANG  

et al.  

(2021) 

Simulate the mode 

shift from road to  

rail by levying  

carbon emission  

taxes 

Increasing carbon 

taxes and 

investments in the 

railway network 

The policies  

investigated have a  

good effect on reducing 

carbon emissions in the 

transportation industry 

The model does not 

consider important 

factors to the mode 

choice process and the 

time lag for the mode 

shift, although it does 

not occur 

instantaneously 

 

Analyzing the SD diagrams of the models regarding shifting freight to lower-carbon 

transport modes, their boundaries, variables, and interrelations that form the feedback 

loops or stock and flow structures can be identified. 

The system dynamics model for economic assessment of sustainability policies of 

transport (ESCOT) was developed by SCHADE and SCHADE (2005) to assess the 

economic impacts of a sustainable transport system, considering macroeconomic, 

regional economic, transport, environmental, and policy aspects. The SD diagrams were 

not provided, but the results show that the growth of freight transport tends to be absorbed 

by rail and ship transport since these alternative modes are attractive enough. 

HAN and HAYASHI (2008) evaluated CO2 emissions, considering factors that affect the 

modal share, such as freight volume, network length, fuel price, and fuel intensity. 

However, no information regarding the dynamics of changes in the system was provided, 

compromising the interactions between policies, mode choice, and emission mitigation 

discussions. Additionally, the modal share modeling does not consider the mode’s 

capacity and its influence on the mode choice.  

BRITO JUNIOR et al. (2011) analyzed the modal shift process, driven by investment in 

the modes’ capacities. As the mode shift increases demand, it was assumed that increasing 

the competitiveness of the mode used would reinforce the mode shift. According to the 

authors, the inertia for the modal change is long; however, it was not evidenced how the 

pressure and policies to shift modes were quantified. The time to promote modal shift is 

randomly assumed as two years. However, its endogenous impact was not demonstrated, 

thus raising the question of how fast other decisions and actions must occur to achieve a 

good balance of modal share.  

LEWIS et al. (2014) explored strategies for emission reductions and determined the 

barriers to the mode switch, taking into account company types, decision-making 

behavior, generalized cost by mode, reliability, functionality, dynamic fleet model, and 
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bands of high-, medium-, and low-cost interventions. The model was then applied and the 

results show that there is more perception of reliability than cost changes (LEWIS et al., 

2015). The relationship between price and mode shift is not linear, capturing different 

companies’ responses, including their tolerance of cost increases, the time lag to 

implement the mode shift due to contractual considerations, and the need for 

implementing new systems.  

YORK et al. (2017) simulated the modal shift from road to rail through increased 

investments in the rail network. The benefits of this shift would include the reduction in 

trucks using the road network, better pavement conditions, and road safety. Such a 

transition would require significant investment to upgrade and maintain the rail track. The 

dynamic relationships could not be analyzed, since the SD diagrams were not provided. 

AZLAN et al. (2019) analyzed the emissions from the vehicle fleet on intercity highways. 

The scenario devoted to freight was to reduce vehicle kilometers traveled by increasing 

fuel price, promoting mode shift, and educating drivers to plan their routes and schedules. 

Therefore, this study does not provide the impact of the isolated freight scenario in freight 

transport demand reduction and emissions mitigation. The model description does not 

show the feedback loops described, and there is no clear relation between the fuel price 

and the average distance traveled. Moreover, it is not clear how assumptions or time lags 

for mode shift and route planning were designed, compromising policy evaluations. 

The impact of policy measures on promoting the modal shift from road to rail, such as 

the increased road cost and containerization, was also examined (CHOI et al., 2019). 

Increases in the imposition of taxes generally cause an increase in the total logistics cost 

of road transport. In contrast, containerization causes a decrease in the entire logistics cost 

of intermodal transport. The rate to implement the policy measures was not provided, but 

the results showed that the modal shift by containerization occurred more rapidly than by 

all kinds of road taxation. 

The mode shift and sustainability of urban transportation were analyzed by DONG et al. 

(2019). The model assumes that the increasing economy leads to more freight volume, 

truck trips, and vehicle kilometers traveled, which increases congestion, delivery travel 

time, and emissions, all impacting economic development. However, the increasing 

economy also leads to more rail investments; then, the truck trip is reduced together with 

vehicle kilometers traveled, congestion, delivery travel time, and emissions, resulting in 
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better economic development. The results show that the high-density development of the 

rail network leads to the best performance of urban transport sustainability. 

LIU et al. (2017; 2019; 2021) evaluated modal shift policies to eliminate overloaded 

trucking. According to the initial modal share, the freight volume by mode is converted 

into the modal traffic, impacting congestion levels and transport time and determining the 

next modal split. The results show that the modal shift increases sustainability. However, 

the reduced freight volume of highway systems would make highway carriers react, e.g., 

by reducing trucking prices to compete with railway transport. Further studies could 

address the gaming processes of multiple stakeholders. 

HU et al. (2019) simulated logistics activities integrated into passenger rail networks. The 

growth of the rail network improves its competitiveness and market share. External 

benefits stimulate more investment and subsidies, which accelerate the modal shift. On 

the other hand, negative impacts, such as job reductions and decreases in fuel tax revenue, 

decrease investments. Although dynamics have not been analyzed, the results show that 

the railway system mitigates emission costs. 

WANG et al. (2020) explored the decarbonization goal, considering that economic 

development increases transportation demand and provides funds for infrastructure 

construction. The gap between supply and demand restricts the economic level, leading 

to more infrastructure investments and increasing transport supply. It was also assumed 

that economic development guarantees technological investment, improves 

transportation efficiency, and reduces energy consumption using alternative modes and 

technological innovations. The results indicate that the mode shift is the most significant 

measure, although time lags were not taken into account. 

HUANG et al. (2021) simulated the mode shift by levying taxes on carbon emissions. 

The increasing economy leads the government to invest in railway freight transport. The 

government also imposes a carbon tax based on CO2 emissions, encouraging the modal 

shift, and promoting the demand and growth of railway freight transport revenue, thereby 

raising the economy level and reducing road transport demand and CO2 emissions. The 

policies investigated have a positive effect on reducing emissions; however, exceeding 

the carbon levy rate will cause the transfer of short-distance trips from road to rail. This 

result indicates that the model could be improved by considering other relevant factors, 

such as trip distance and freight flow. Moreover, no time lag was mentioned for the mode 



 

27 
 

shift, although the companies’ resistance, time for adaptation, and inertia play a role in 

the mode choice process. 

Despite the differences presented in the literature, some common variables and feedback 

loops that rule the dynamic relationships in shifting freight to lower-carbon transport 

modes can be highlighted, as shown in Figure 2.4. In this case, emissions and fuel 

consumption depend on the mode used, according to the modal share. Factors influencing 

modal share include logistics costs, freight volume, and mode competitiveness. Economic 

development and pressure to reduce emissions also play a role in the feedback loops. 

 
Figure 2.4 – Common dynamic relationships in shifting freight to lower-carbon transport 

modes.  
Source: based on CHOI et al. (2019); BRITO JUNIOR et al. (2011); DONG et al. (2019); HAN and 

HAYASHI (2008); HU et al. (2019); HUANG et al. (2021); LEWIS et al. (2014); LIU et al. (2021); 

WANG et al. (2020). 

Some studies only presented the main equations (not detailed) of their models (AZLAN 

et al., 2019; CHOI et al., 2019; BRITO JUNIOR et al., 2011; ERDMANN et al., 2004; 

HU et al., 2019; HUANG et al., 2021; LIU et al., 2017; 2019; 2021; WANG et al., 2020), 

making it challenging to analyze, replicate, or apply them. Moreover, there is no 

information about integration techniques or time steps used. Regarding the delays, no 

information was found; despite pressure to reduce emissions, the pressure to improve 

mode capacity, infrastructure investment, and fuel taxes may take time to be 

implemented. A general lack of discussion about the dynamic aspect of policy impacts in 
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all mode choice SD models was found, i.e., how quickly or slowly the systems may 

change over time to achieve the results in a specific time.  

2.3.3 Improving Assets Utilization 

Optimizing assets utilization accommodates more freight transport demand with the same 

infrastructure and capital investment. It can be achieved through load optimization and 

consolidation, asset sharing, and better management of logistics centers, warehouses, and 

transport infrastructure. Transport predictability and flexibility are important enablers for 

this solutions area (ALICE, 2019). Table 2.5 summarizes the SD models’ objectives, 

policy elements, contributions, and limitations for improving vehicle utilization 

modeling. 

Table 2.5 – Contributions of SD models for improving vehicle utilization modeling. 

Authors Objectives 
Policy 

Elements 
Contributions Limitations 

DOLL et al. 

(2010) 

To evaluate the 

impacts of longer 

and heavier  

vehicles on 

emissions and show 

the effect of road 

pricing on the 

market share of 

these vehicles 

compared to rail 

Internalization 

of transport 

external costs; 

allowance of 

heavier trucks 

Increased truck sizes and high 

road user charges can only  

limit truck traffic growth for a 

specific time. The negative 

impacts in the medium term  

are much stronger than the 

initial positive effects 

It was not analyzed 

how different types 

of companies react 

to the 

internalization of 

external costs and 

how they decide to 

use railway or 

heavier trucks 

ASCHAUER 

(2013); 

ASCHAUER  

et al. (2015) 

To model the 

interdependencies 

between logistics 

strategies and 

transportation with 

the goal of higher 

utilization of trucks 

and a modal shift to 

rail 

Growth of 

transport costs 

through 

internalization 

leads to more 

pressure to 

consolidate 

freight 

The model concentrates on 

operative parameters, such as 

order cycle frequency, amount 

per order cycle, and shipment 

amounts  

Inventory costs 

were disregarded, 

although this could 

lead to different 

results 

OUMER et al. 

(2015) 

To simulate CO2 

emissions for 

inbound and 

outbound logistics 

in an automotive 

assembly line 

Shipment 

consolidation 

Unlike the majority of SD 

models, this study addressed 

operational activities at a 

company level 

How the policy will 

be implemented and 

the time response of 

its effects was not 

presented  

LIU and MU 

(2015) 

To evaluate the 

effects of  

alternative truck 

weight regulation 

policies on the 

sustainability of a 

highway freight 

system 

Alternative 

weight 

regulation 

policies 

Social costs, such as pavement 

maintenance, traffic accidents, 

and emissions, are simulated, 

evidencing the sustainability of 

different weight regulations 

Consideration of a 

single freight and 

truck type while 

neglecting the 

storage process. 

Delays were 

simplified, as the 

pavement 

maintenance was 

assumed to occur 

within the model 

time step 
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Authors Objectives 
Policy 

Elements 
Contributions Limitations 

SIM (2017) 

To analyze the 

carbon emission 

abatement required 

for the truck freight 

sector while 

investigating the 

uncertainty in 

demand and 

technology 

developments 

Not considered  

It simulates the total emission 

reduction target, and the result 

is the percentage of reduction 

needed in the transport sector. 

Policies are recommended but 

not simulated 

Despite freight 

volume and carbon 

emissions target 

changing 

dynamically, the 

discussion about 

how this change 

occurs over time 

was not provided 

MELKONYAN 

et al. (2020) 

To explore the 

sustainability 

potential of last-

mile logistics and 

distribution 

strategies, 

employing  

different delivery 

alternatives 

Investments in 

digital 

applications for 

tracking and 

tracing and 

outsourcing the 

pickup to 

consumers 

The crowd logistics concept (in 

which the logistics service 

provider decides where to pick 

up the parcel or whether to 

outsource the pickup to 

individuals) is the better 

solution 

Significant factors 

were not applied, 

such as carbon 

taxation, inventory 

management, and 

economic 

parameters 

HAMOUDI et 

al. (2021) 

To analyze the 

freight flows in a 

distribution chain 

based on  

inventory and 

transport costs  

and the evolution  

of the customer 

order 

Internalization 

of CO2 

emissions tax; 

different levels 

of truck 

capacity 

utilization 

Logistic decisions are taken at 

the supply chain level, as the 

loading vehicles’ rate, their 

loading capacity, their order 

cycle frequency decisions are 

generally taken lightly in the 

companies, whereas they 

influence the distribution costs, 

transport demand, fuel 

consumption, and emissions 

The model 

disregarded relevant 

market parameters, 

such as financial 

aspects, marketing 

strategies to make 

the business 

greener, and others  

 

Different assumptions can be identified by analyzing the SD diagrams of the models, their 

variables, feedback loops, and stock and flow structures. DOLL et al. (2010) evaluated 

the impacts of longer, heavier vehicles (LHVs) on emissions. For the market entry of 

LHVs, adaptation processes in logistics sectors have to take place. An unavoidable delay 

between legal permission and full market penetration occurs. This delay is longer for 

railways since more complex logistics processes must be refined. The results show that 

depending on the rail freight demand and costs by transport unit, the modal shift may take 

place from rail to road, undermining CO2 reduction gains. However, the discussed delays 

for the logistics adaptation process were not estimated. 

ASCHAUER (2013) and ASCHAUER et al. (2015) modeled logistics strategies toward 

more efficient transport operations and higher utilization of trucks. The shipment amount 

is influenced by the operating logistics concept (i.e., just in time), which affects the order 

cycle frequency and the amount per order cycle. Small shipment amount means a low 

utilization of trucks, which influences the transport distances traveled, fuel consumption, 

emissions, transportation costs, and the pressure to consolidate. If consolidation pressure 
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increases, the shipment amount also increases, which takes time, as companies have to 

identify consolidation potential. This response time has to be further explored.  

CO2 emissions for inbound and outbound logistics based on shipment consolidation 

technique in an automotive assembly line were simulated by OUMER et al. (2015). CO2 

emissions were calculated based on the total number of trips made by inbound and 

outbound transport vehicles and the type of fuel used. However, the shipment 

consolidation policy and the assumptions about how it should be implemented (i.e., 

increasing load factor and vehicle capacity) were not presented. 

The effects of alternative truck weight regulation policies on the sustainability of a 

highway freight system, considering economic and social costs including pavement 

maintenance, traffic accidents, and emissions, were evaluated by LIU and MU (2015). 

Three levels of weight regulation policies were considered. The best policy varies 

according to the importance of social costs. The model presents neither the SD diagrams 

nor the equations, delays, or time lags between policy implementation and results. 

SIM (2017) considered that an increase in the truck–freight demand increases emissions, 

which are estimated based on the total transportation volume of each truck type (light, 

medium, and heavy) and the carbon density over the traveled distance. The freight volume 

and carbon emissions target are time-dependent, but the discussion about how the change 

occurs over time was not provided. The results suggested increasing the use of medium 

and heavy trucks. Further exploration of whether large or heavy trucks can replace light 

trucks is necessary. 

MELKONYAN et al. (2020) explored the sustainability of last-mile logistics with 

different distribution strategies. The centralized distribution case is profitable due to 

increased demand, while the operational and environmental costs increase. In the home 

delivery case, the emissions will be more significant, given a substantial increase in 

customers, increased transport distances, and a higher truck emission rate. The distributed 

network system considered crowd logistics operations relying on a sharing economy 

model, in which pollution will not increase sharply compared to previous options. The 

time that companies take to change their distribution strategies should be further explored. 

HAMOUDI et al. (2021) analyzed freight flows in a distribution chain based on inventory 

and transport costs. The logistics decisions are taken at the supply chain level, as the 

choice of loading vehicle rates and order cycle frequency is generally taken lightly by the 
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companies, whereas they influence distribution costs, transport demand, fuel 

consumption, and emissions. Low truck utilization involves a high number of shipments, 

which increases road use, reduces average speed, and increases lead time and transport 

costs, impacting customer satisfaction, demand, and order quantity per year.  

Figure 2.5 presents the usual variables and feedback loops that rule the dynamic 

relationships in the models related to the improvement of asset utilization. The logistics 

concept of the supply chain dictating the order cycle frequency and amount per order 

cycle, the distribution costs impacting customer satisfaction and demand, and the pressure 

to consolidate are some of the key variables forming the feedback loops. Fuel 

consumption and emissions are influenced by the distance traveled, which depends on 

vehicle utilization. 

 
Figure 2.5 – Common dynamic relationships in improving asset utilization models. 

Source: based on ASCHAUER (2013); HAMOUDI et al. (2021); MELKONYAN et al. (2020); SIM 

(2017). 

Regarding the quantitative phase of the SD models, ASCHAUER et al. (2015) and 

MELKONYAN et al. (2020) presented the model equations in detail, and LIU and MU 

(2015) and SIM (2017) presented some main equations, while the other studies did not 

provide them, showing a lack of transparency. Integration techniques or time steps used 

were not revealed. The only delay reported (but not quantified) was between the pressure 

to consolidate and the shipment amount. In contrast, uncertainties may exist related, for 

example, to customer satisfaction and the influence of emissions on transport costs, which 
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requires the internalization of external cost processes. Such dynamic aspects should be 

further investigated. 

2.3.4 Increasing Energy Efficiency 

Increasing vehicle efficiency involves using cleaner and more efficient technologies, fleet 

renewal, and driving behavior/eco-driving, among other measures. An increase in the 

variety of technologies reducing CO2 emissions in heavy commercial vehicles is 

expected; however, this market implies multiple stakeholders, which considerably affects 

market dynamics. Table 2.6 summarizes the SD models’ objectives, policy elements, 

contributions, and limitations for increasing energy efficiency modeling. 

Table 2.6 – Contributions of SD models for increasing energy efficiency modeling. 
Authors Objectives Policy Elements Contributions Limitations 

KRAIL 

and 

KÜHN 

(2012) 

To simulate the diffusion 

of alternative fuels and 

show the potential of fuel 

efficiency technologies 

for conventional vehicles 

Taxes on different 

technologies and 

emissions levels 

Hydrogen is 

considered a  

promising technology 

for long-distance and 

regional traffic, while 

light distribution  

traffic is predestined 

for electric drives 

Other factors (technical 

attributes, range, 

recharging time, and 

refueling/recharging 

stations density) that 

influence market 

adoption of new 

technologies were not 

considered 

SEITZ 

(2014) 

To analyze the diffusion 

of technologies reducing 

CO2 emissions in heavy 

commercial vehicles 

Investments in 

refueling 

infrastructure and 

R&D technologies 

The factors for the 

successful diffusion  

of CO2-saving 

technologies were 

discussed from a 

stakeholder 

perspective 

The framework was not 

quantified, applied, and 

validated 

SEITZ  

and 

TERZIDIS 

(2014) 

To forecast the market 

penetration of alternative 

powertrain technologies 

to the heavy commercial 

vehicles market 

Investment in 

refueling stations 

and R&D for 

alternative 

powertrains. Costs 

of adoption and 

ownership are  

taken into account 

The model is helpful  

to study some market 

dynamics and  

highlight the sensitive 

factors of the market 

diffusion process  

The missing empirical 

data compromise the 

analysis of market 

diffusion 

GENG et 

al. (2017) 

To interrelate regional 

ship emissions, economic 

growth, and the 

development of a 

sustainable ecosystem 

Speed reduction, 

use of shore 

electricity, engine 

improvement, and 

exhaust after-

treatment 

technologies 

The model provides 

assumptions that 

determine the model 

behavior. Ship speed 

should be optimized  

to achieve greater 

benefits 

There is a lack of 

reasonable validation 

and uncertainties in the 

variable equations and 

parameter values 

 

Analyzing the SD diagrams of the models related to increasing energy efficiency and their 

variables, feedback loops, and stock and flow structures, we can identify different 

assumptions made to model the system under study. KRAIL and KÜHN (2012) simulated 

the diffusion of alternative fuels and drives within the truck market. There is a common 
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link between the cost of trucks and their adoption, influencing the manufacturing costs 

via economies of scale. Investing in new technology is driven by economic forces 

considering the investment, maintenance, fuel, toll, taxes, and refueling costs.  

SEITZ (2014) also analyzed the diffusion of technologies reducing CO2 emissions in 

heavy commercial vehicles. The study identified that customer preferences change with 

gaining market shares of innovative technologies. Therefore, the adoption decision 

impacts the organization by influencing the social network, supplier’s efforts, 

governmental regulation, and the energy supply system. The causal loop diagram presents 

delays between some variables, such as governmental regulation, station construction, 

and market share, although they are not adequately discussed in the study. 

SEITZ and TERZIDIS (2014) modeled the penetration of alternative powertrain 

technologies into the heavy commercial vehicles market. The model presented some 

market dynamics and highlighted the sensitive factors of the diffusion process. However, 

there are several limitations due to missing dynamic empirical data.  

GENG et al. (2017) interrelated regional ship emissions, economic growth, and 

sustainable ecosystem development. Although the causal loop descriptions do not 

characterize feedback loops, the model provides assumptions that determine its behavior, 

divided into five sub-systems: shipping, energy, environment, economic, and policy 

components. The results show that ship speed should be suitably reduced to achieve more 

significant economic and environmental benefits. The model’s limitations include a lack 

of proper validation and uncertainties in the variable equations and parameter values. 

Figure 2.6 presents the common variables and feedback loops that rule the dynamic 

relationships in the models related to increasing energy efficiency. R&D investment, 

influenced by both manufacturer interests and pressure to reduce emissions, increases 

vehicle efficiency and reduces emissions. The attractiveness of CO2-saving technologies 

considers different factors, such as technology costs, consumer familiarity, refueling 

station coverage, and fuel prices.  

In the quantitative phase of the SD models, only SEITZ (2014) did not provide the 

equations, while the other studies provided some of them. Moreover, there is no 

information about integration techniques or time steps used. The diagrams represent some 

delays, although their estimations were not provided. Decisions related to the fleet 
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renewal process and adoption of alternative technologies may take significant time to 

better investigate in future SD models. 

 
Figure 2.6 – Common dynamic relationships of increasing energy efficiency models.  

Source: based on GENG et al. (2017); SEITZ (2014); SEITZ and TERZIDIS (2014). 

2.3.5 Switching to Lower-Carbon Energy 

Achieving deep carbon reductions will require a significant shift from fossil fuels to 

renewable energy. In this solution area, the focus is on reducing the carbon content of 

energy sources. The available options include using cleaner and lower-carbon fuels, such 

as biofuels, blended fuels, hydrogen, and electrification that ideally uses renewable 

energy, whose adoption will have significant challenges related to politics, economics, 

collaboration, awareness of technologies and methods, investment in renewable energy, 

acceptance of new technologies by societies, and type of governance (RAZMJOO et al., 

2022). Table 2.7 summarizes the SD models’ objectives, policy elements, contributions, 

and limitations for promoting alternative energy sources. 

Different assumptions were identified by analyzing the SD diagrams, their variables, 

feedback loops, and stock and flow structures. FIORELLO et al. (2010) presented the 

assessment of transport strategies (ASTRA) model to assess energy scarcity, high oil 

prices, and technological investments in the transport sector, besides simulating transport 

taxation, infrastructure investments, incentives to accelerate fleet renewal, and increases 

in fuel prices. The typical results are projections of transport demand, CO2 emissions, and 
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the evolution of vehicle fleets. However, the model structure is not presented; therefore, 

it is impossible to analyze its structure and feedback loops. 

Table 2.7 – Contributions of SD models for promoting alternative energy sources modeling. 

Authors Objectives Policy Elements Contributions Limitations 

FIORELLO et 

al. (2010) 

To assess policies 

concerning energy 

scarcity, high oil 

prices, and 

technological 

investments in the 

transport sector 

Transport taxation, 

road charging, 

infrastructure 

investments, 

incentives for fleet 

renewal, and 

increases in fuel 

resource prices 

Analysis of  

transport demand, 

CO2 emissions, and 

evolution of vehicle 

fleet. Simulation of 

transport at the 

strategic level 

The model was not 

presented; therefore, it was 

not possible to analyze its 

structure and feedback loops 

in detail, compromising its 

replicability 

PURWANTO 

et al. (2011) 

To estimate 

transport demand 

emissions and 

impacts of policy 

and technological 

measures covering 

all transport modes 

from the different 

regions in the 

world up to 2050 

New emission 

standards, 

penetration of 

alternative 

technologies, an 

increase in fuel 

efficiency, and fleet 

renewal; fuel 

quality; incentives 

for low-emission 

cars, internalization 

of external costs; 

and traffic 

management 

Useful for transport, 

environmental, and 

economic analysis 

of different policies 

and measures to 

reduce emissions 

from transport 

Only the structural 

components of the model in a 

macro-overview are 

provided, while the SD 

diagrams are dismissed, 

compromising the replication 

of the model or the 

evaluation of the feedback 

loops and the model 

dynamics 

SHAFIEI et 

al. (2014) 

To model 

interactions 

between the  

energy supply 

sector and road 

transport energy 

demand 

Oil price variations, 

alternative fuel 

availability, and 

carbon taxes 

Rising fossil fuel 

prices, carbon tax, 

and initial 

investment in 

alternative fuel 

supply could reduce 

emissions; however, 

more stringent 

policies will be 

necessary for a 

carbon-neutral 

scenario 

The model does not consider 

the performance deterioration 

of battery and fuel cells. It 

also lacks an analysis of the 

costs of refueling and 

recharging infrastructure 

CAGLIANO 

et al. (2015a; 

2015b; 2017) 

To assess the 

diffusion of a city 

logistics system 

based on electric 

and hybrid  

vehicles 

Subsidies for 

alternative 

technologies and 

investment in 

refueling/ 

recharging 

infrastructure 

Advertising 

campaigns, 

involvement of 

public authorities, 

and adoption of 

suitable 

technologies are the 

main aspects that 

can stimulate the 

diffusion of 

alternative vehicles 

The dynamic process of 

adoption of technologies by 

companies is not presented, 

as well as the assumptions 

made about time responses to 

policy implementation 

MENEZES et 

al. (2017) 

To evaluate low-

carbon urban 

development 

strategies for the 

transport sector 

Improving fuel 

efficiency and 

promoting the use  

of biofuels 

The policies 

simulated are not 

enough to achieve 

the required 

emissions reduction. 

Efficiency gains 

should be combined 

with measures to 

reduce the rebound 

The model does not consider 

other decarbonization 

strategies that may be 

impactful in the long run, as 

well as a cost-benefit 

analysis of the policy mix 
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Authors Objectives Policy Elements Contributions Limitations 

effect on travel 

demand 

HADDAD et 

al. (2019) 

To estimate the 

potential 

reductions in fuel 

use and CO2 

emissions from 

electrified truck 

technologies, 

combined with 

using electric rail 

for heavy freight 

transport 

Not considered 

The strategies 

simulated lead to a 

reduction in energy 

use and 

corresponding 

emissions but are 

not enough to 

reverse current 

growth trends 

The model does not evidence 

of how strategies should be 

implemented (policies) and 

what the related dynamics 

involved are 

BARISA 

AND ROSA 

(2018a; 

2018b) 

To forecast 

emissions from 

transport sub-

sectors in response 

to changes in 

social, economic, 

technical, and 

policy aspects 

Fossil fuel taxes, 

subsidies for 

alternative fuel 

vehicles, investment 

in refueling/ 

recharging 

infrastructure, 

mandatory use of 

biofuels, increase in 

environmental 

awareness, and 

efficiency 

improvement  

The results confirm 

that there is no 

single policy 

instrument that 

could reduce GHG 

significantly, and a 

broad portfolio of 

policy measures is 

needed 

The model was only partially 

presented; thus, it was not 

possible to evaluate the 

model structures and the 

assumptions made for the 

system’s dynamic behavior 

over time 

SETIAWAN 

et al. (2019) 

To analyze energy 

consumption and 

CO2 emission 

reductions from  

the road 

transportation 

sector 

Efficiency 

improvements,  

mode shift from 

truck to rail, and 

adoption of electric 

vehicles 

If adopting one 

single policy, 

electric vehicle 

adoption produces 

better results; 

however, the 

optimal result 

should include  

a mix of policies to 

achieve further 

emission reductions 

The paper does not provide 

the feedback loop 

descriptions and does not 

mention the assumptions 

made regarding the time 

responses from the policy’s 

implementation to the 

result’s achievement 

ROZENTALE 

et al. (2020) 

To evaluate the 

electrification of 

the railway 

considering the 

electrical supply 

system and its 

development, 

power demand, 

economic, and 

environmental 

effects 

Investment in 

railways and new 

energy sources 

The electrification 

of railways has 

considerable 

potential to reduce 

emissions from the 

freight transport 

sector, helping to 

achieve climate 

targets 

The policy is assumed to be 

implemented by 2030; 

however, the actions needed 

and the time they will take 

have not been discussed 

ZENEZINI 

and MARCO 

(2020) 

To grasp the 

complexities 

inherent to the city 

logistics system, 

the policy-making 

process, and its 

connections to 

operational and 

economic variables 

Road infrastructure 

capacity; load 

consolidation; 

economic incentives 

for electric vehicles 

As green vehicles 

are assumed to be 

more attractive,  

they absorb the 

increase in demand, 

starting a transition 

from traditional to 

green vehicles 

The model does not consider 

green technologies other than 

electric vehicles, as well as 

other factors that impact their 

adoption, such as technical 

issues and market acceptance 

dynamics 

 



 

37 
 

PURWANTO et al. (2011) presented the global scale system dynamic simulation model 

for transport emissions (GLADYSTE) to estimate the impacts of policy and technological 

measures in transport-related sectors. The scenarios include new technologies, fuel 

quality, fiscal instruments, and traffic management policies. However, the SD diagrams 

and equations were not provided, making it unfeasible to replicate the model and evaluate 

the behavior or the assumptions between variables and the feedback loops, delay 

equations, or time-related variables. 

SHAFIEI et al. (2014) modeled the interdependencies between the energy supply sector 

and road transport energy demand. The findings show that rising fossil fuel prices, carbon 

taxes, and investing in alternative fuel supply could reduce emissions. However, more 

stringent policies will be necessary for a carbon-neutral scenario, such as efficiency 

improvements, travel demand management, vehicle technology shifts, and fuel switches. 

CAGLIANO et al. (2015a; 2015b; 2017) modeled the diffusion of a city logistics system 

based on electric and hybrid vehicles. The size of the fleet depends on freight demand, 

vehicle capacity, and load factor. The lower operating costs of alternative technologies 

generate savings and reinforce their adoption. However, the greater the number of 

vehicles, the more investment is needed, negatively affecting their purchase. 

MENEZES et al. (2017) evaluated low-carbon strategies for the transport sector by using 

the SD model For Future Inland Transport Systems (ForFITS). This model estimates the 

demand for each transport mode based on GDP, population, economic growth, price 

inflation, and other analyses. Policies adopted for freight transport include improving fuel 

efficiency and promoting the use of biofuels. The substitution of less efficient vehicles 

may occur slowly over time, although such delay was not addressed.  

HADDAD et al. (2019) also employed ForFITS to estimate fuel use and emission 

reductions from electrified trucks and electric railways. Increasing the share of plug-in 

hybrid electric and fully electric trucks would reduce energy use and emissions, but it 

would not be enough to reverse current demand growth trends. Increasing the share of 

rail transport would lead to an additional reduction while combining both mitigation 

options indicates the highest savings. This solution comes at the cost of providing the 

necessary electric charging infrastructure and clean energy mix to operate these vehicles 

effectively, which may not occur as quickly as desired. 



 

38 
 

BARISA and ROSA (2018a; 2018b) analyzed CO2 emission mitigation in the road 

transport sector in response to social, economic, technical, and policy changes. Fuel 

consumption depends on fuel type, vehicle type, and distance traveled, while CO2 

emissions depend on fuel consumed and emission factors. No single policy instrument 

could reduce emissions significantly, and a broad portfolio of policy measures is needed. 

SD diagrams were not provided, making it difficult to evaluate model structures and the 

assumptions made for the system’s dynamic behavior over time. 

SETIAWAN et al. (2019) analyzed the road transportation sector’s energy consumption 

and CO2 emission reduction. Policies simulated fuel economy standards through 

efficiency improvements, mode shift from road to rail, and adoption of electric vehicles. 

Electric vehicle adoption is a good alternative, although the optimal result should include 

a mix of policies to reduce emissions. The paper does not provide the feedback loop 

descriptions and does not mention the assumptions made regarding the time responses 

from policy implementation to the result’s achievement.  

ROZENTALE et al. (2020) evaluated the impact of the railway electrification system. 

One dynamic factor included in the model is financial stability, which is very difficult to 

achieve, as railway operations require a lot of resources and an even flow of transport. At 

the beginning of the railway operations, there may be unavoidable delays, which will slow 

down the freight flow and lead to potential delays in investment return. The cost and the 

time of changing the locomotives were also considered. The electrification of railways 

has considerable potential to reduce emissions from the freight transport sector, helping 

to achieve climate targets, although the mentioned delays were not assessed. 

ZENEZINI and MARCO (2020) analyzed the city logistics system, the policy-making 

process, and its connections to operational and economic factors. The level of emissions 

was analyzed considering policies promoting electric vehicles. As CO2 emissions rise, 

the financial incentives for green vehicles increase, making them more attractive to absorb 

transport demand. However, the model does not include technical issues, availability of 

charging stations, and time responses of policies related to alternative fuel adoption. 

Figure 2.7 shows the common variables and relationships that form the feedback loops in 

the SD models related to alternative fuel adoption. Emissions depend on fuel consumption 

and efficiency, while alternative vehicle adoption takes into account regulations, fuel 

costs, refueling and recharging station availability, purchase and maintenance costs, as 



 

39 
 

well as drivers’ experiences. On the other hand, transport demand and vehicle load lead 

to an expected fleet, influencing vehicle sales, while incentives to renew the fleet are 

another option to scrap polluting old vehicles and adopt alternative green technologies. 

  
Figure 2.7 – Common dynamic relationships of switching to lower-carbon energy models.  
Source: based on BARISA and ROSA (2018a; 2018b); CAGLIANO et al. (2015a; 2015b; 2017); 

PURWANTO et al. (2011); SETIAWAN et al. (2019); ZENEZINI and MARCO (2020). 

Most studies did not present the model equations in the quantitative phase of the SD 

models, while one showed them entirely, see CAGLIANO et al. (2017), and three 

(BARISA and ROSA, 2018b; SHAFIEI et al., 2014; ZENEZINI and MARCO, 2020) 

presented only the main equations. Integration techniques or time steps used were not 

disclosed. Any delay was discussed or represented in the models, although implementing 

regulations to adopt alternative fuels, incentives to renew the fleet, or drivers’ experience 

consolidation may not occur instantaneously. In general, there is a lack of discussion 

about the time responses related to policy enforcement and the willingness of companies 

to adopt innovations regarding alternative fuels and efficient vehicles. Thus, there is a 

research opportunity to deepen knowledge associated with the intrinsic dynamics of 

changing technological paradigms of this decarbonization strategy.  

2.4 Final remarks of the chapter 

In this chapter, the application of system dynamics models to the policy challenge of 

decarbonization of freight transport was reviewed. Particular focus was placed on the 

model’s structure, key variables, and dynamic factors, such as delay equations, time-
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related variables, sequences of stock and flows, and assumptions made to build feedback 

loops. 

The first conclusion of this literature review is related to the limited boundaries of the 

models to represent the system. Overall, system dynamics models were found for 

different individual decarbonization strategies, with varying levels of detail. However, 

any model addressed the five decarbonization strategies for analysis if, how, and when a 

given level of emissions reduction could be achieved. As described in Section 2.1, freight 

transport has a systemic nature, whereby changes in one element affect other ones of this 

system over time. A partial or disconnected view hinders a final assessment of the most 

effective actions. We see this coordination of different policy measures as a fundamental 

challenge for the decarbonization of the freight transport system in the coming years. 

Methods need to be developed to study the interaction of different policy measures.  

The second conclusion taken from the literature review analysis is the lack of 

transparency concerning the empirical modeling of the temporal dimension. Although 

most authors provide time ranges in their simulation results (see Table 2.1), they are not 

clear about the background of pathways or the delay assumptions for each decision to 

achieve the results in those defined terms. Occasional explanations of dynamics related 

to vehicle utilization and mode shift decisions have been found. Some studies also 

included delays in governmental policies, market shares, and their impacts on the 

construction of fueling stations. These are some rare examples of dynamics as a factor in 

decarbonization pathways. However, we argue that time lags should be considered in an 

empirically rigorous way for freight transport decarbonization models to predict 

dynamics well. The dynamic component of the reviewed system dynamics models is 

often not clear, which is observable through the absence of model equations, system 

dynamics diagrams, and even model descriptions and assumptions. This is a major 

problem, not just for the research community, but mostly because time is crucial for 

assessing whether simulated policy measures effectively achieve decarbonization targets 

in the short, medium, and long term. For this reason, the SD community should focus on 

describing the time component of their models, either through actual data or assumptions, 

to deepen discussions regarding the problem.  

Many barriers exist in the testing and validation phases since it is impossible to obtain all 

necessary data without significant research efforts. Another possible difficulty could be 

quantifying the factors or relationships between agents, such as lobby practice, regulatory 
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pressure, or market acceptance of new technologies. Therefore, solid assumptions in 

dynamic models will be unavoidable for some time, but ignoring a causal link or the 

associated time delay can be worse than making a good guess. Therefore, further research 

should consider an integrated model with all possible strategies and agents related to 

freight transport decarbonization and their time-lag decisions to build a more realistic 

model. A significant opportunity lies in enriching system dynamics models with studies 

of specific subsystems or decisions, such as the internalization of emissions costs and 

adopting new technologies and alternative fuels. Such studies can also be executed with 

time series models or discrete simulation models, independently of the larger system 

models discussed in this chapter. Based on such empirically validated models, the task of 

integration into large system dynamics models could be undertaken in future research.  

The rebound effect of transport efficiency on logistics costs and product prices and, 

consequently, on freight demand, should be further analyzed. The time lags could be 

better investigated for the mode choice process, such as companies’ decisions and 

adaptation time, and the time taken for public and private investments in logistics 

infrastructure to support the mode shift. It would be interesting to note how companies of 

different levels react to policies, such as the internalization of external costs, marketing 

strategies, and the green image of companies and how it impacts the use of their fleets 

over time. Moreover, analyzing organizational adoption behavior could expose the 

dynamics and time responses of market diffusion of alternative technologies, considering 

the competition between different technologies and how it would impact their adoption 

over time. Table 2.8 summarizes suggestions for deepening the study of the dynamics of 

each decarbonization strategy. 

The current search is subject to improvements, as there may be studies not included here, 

either because they are in other databases or because they do not contain the keywords 

used in our search. Even so, our findings are relevant for the scientific community due to 

the increasing use of system dynamics in the analysis of freight transport decarbonization 

strategies. Besides highlighting the gaps in the literature, we contribute to future research, 

since the results assist researchers with their structured discussion about the main 

decarbonization strategies. 
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Table 2.8 – Suggestions for future research in each decarbonization strategy. 

Decarbonization 

Strategies 
Suggestions 

Reducing freight 

transport demand 

The dynamic of the market response to product prices or logistic costs should be further 

analyzed, as well as other policies, such as logistics collaborations, partnerships, and 

vertical integration, and their effects on freight transport demand. 

Shifting freight 

to low-carbon 

intensity modes 

Warehousing and transshipment costs should be considered, as well as time lags 

regarding the mode choice process, the network construction time, and companies’ 

adaptation. A cost-benefit analysis could assess secondary benefits, such as road 

conservation and safety. Further studies could address the gaming processes of multiple 

stakeholders’ competition. 

Improving 

vehicle 

utilization 

The reaction of different companies’ levels to the internalization of external costs and 

other policies and how it impacts the use of their fleets and other asset capacities should 

be further investigated. Inventory costs and management should be taken into account, 

as they affect the dynamics of logistics operations. Marketing strategies and the green 

image of companies could be further analyzed. 

Increasing 

energy efficiency 

Analyzing organizational adoption behavior in more detail could expose the dynamics 

and time responses of market diffusion of alternative technologies. 

Promoting 

alternative 

energy sources 

The lifespan of batteries, fuel cells, and installation and operating costs of refueling and 

recharging infrastructure could be added to the analysis of the dynamics adoption of 

alternative vehicles. 

Models should also consider the dynamics of competition between different 

technologies and their adoption over time. 

 

The next chapter will present a conceptual model composed of causal loop diagrams, 

which was drawn based on the literature review, integrating the five decarbonization 

strategies from a system-wide perspective. This qualitative model contributes to the 

literature, bringing to light the need for coordination between decisions within the system 

so that their effects are not minimized or defeated. 
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3 Dynamics of freight transport 

decarbonization: a conceptual model   

This chapter describes a conceptual model for the freight transport decarbonization 

system through causal loop diagrams. Published in the Journal of Simulation (GHISOLFI 

et al., 2022b), we chose to keep the original structure, form, and text as close as possible 

to the published paper, which justifies a new literature review section, although it is 

grounded in the literature review presented in Chapter 2. It details the dynamics of the 

system bringing a broad view with five decarbonization measures, the feedback loops 

between their components, and the dynamic levers that have the potential to change the 

system according to the policy instruments applied. Through this conceptual modeling 

effort, we can identify the rebound effects of policies over the whole system, which could 

defeat the desired decarbonization results. The proposed qualitative model starts filling 

one of the gaps found in the literature review carried out by GHISOLFI et al. (2022a), 

presented in Chapter 2, regarding a model with a system-wide perspective, capable of 

representing the dynamics between decision-making in different areas of the system.  

 

3.1 Introduction 

Climate change is a worldwide concern and the global pressure to decrease greenhouse 

gas (GHG) emissions is strengthening to reduce negative environmental impacts. 

According to the Paris Agreement, all parties should put forward a long-term strategy 

setting out the actions that they will take across the whole economy to contribute to the 

global goal of limiting the average temperature increase (UNITED NATIONS, 2015). 

This means that global emissions should decrease significantly by mid-century, mostly 

led by developed countries (EUROPEAN CLIMATE FOUNDATION, 2018). In this 

context, a rising number of countries are targeting net-zero emissions by 2050, which will 

demand a set of ambitious actions over the next years. Decarbonization strategies may 

have quite specific and narrow time windows to take effect, turning this system into a 

dynamically complex one. Bringing about a 40% reduction in emissions by 2030, for 

example, requires that passenger electric cars worldwide increase from 2.5% in 2019 to 

more than 50% in 2030 according to the World Energy Outlook 2020 
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(INTERNATIONAL ENERGY AGENCY – IEA, 2020). While many sectors show 

decreasing emissions of GHG and passenger transport is moving towards electrification 

and less CO2-intensive fuel alternatives, freight transport remains heavily dependent on 

fossil fuels (FRIDELL et al., 2019). The transport sector accounted for 7.219 Mt CO2 of 

global emissions in 2020, from which freight transport was responsible for about 37% 

(only heavy trucks accounted for 24%) (IEA, 2021), which is expected to increase due to 

e-commerce and home delivery. GUÉRIN et al. (2014) stated that freight transport is one 

of the most difficult economic activities to decarbonize, especially because the demand 

for freight movement is expected to increase, and it will be even harder to reduce its huge 

dependence on fossil fuels over this period. 

Transition pathways to low-carbon freight transport systems combine different measures. 

MCKINNON (2018) proposed five broad strategies to decarbonize freight transportation: 

(1) reducing the demand for freight; (2) shifting freight to low carbon-intensity modes; 

(3) optimizing vehicle loading; (4) increasing the energy efficiency of freight vehicles; 

(5) reducing the carbon content of energy used. This is only possible with top-down 

policies since the freight transport sector represents a market-driven social, technical, and 

economic system, which depends on many different private and public stakeholders for 

its change. These stakeholders may strongly differ in their interests, preferences, 

decisions, and rules of behavior, which influences the impact of policy options in different 

contexts (MEASE et al., 2018). Policies that intervene in the system may create 

unanticipated side effects, leading not only to policy resistance, but also to the tendency 

for interventions to be delayed, diluted, or defeated (MEADOWS, 1982), impacting the 

evolution of the system. Thus, besides the mechanisms to decarbonize freight 

transportation, we should also consider the internal dynamics that lead this process, and 

the time they take to be effective in different scenarios. By viewing the dynamics of the 

freight transport system from the context of decarbonization, we can analyze how 

strategies impact each other through dynamic feedback loops and how this could affect 

the overall speed of change of emissions reduction. Some strategies can have counter-

productive rebound effects and reinforce the use of a polluting mode of transport. For 

example, increasing truck efficiency leads to road transport costs reduction and increases 

in its use, in addition to reducing emissions. Therefore, a systemic view allows us to 

analyze the impact of desirable or concurrent effects. It allows policymakers to 

understand the critical dynamic levers inside the system and to make them aware that 
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their decisions not only impact the final result but also the time that passes until the system 

is decarbonized.  

Given the problem sketched above, the research question that guides this research is: how 

can we conceptually model the complexity and dynamics of the freight transport system’s 

decarbonization? In addition to explicitly modeling the mechanisms, we also aim to 

highlight the dynamic processes of the five decarbonization strategies described by 

MCKINNON (2018).  

We take a systems approach to understand the complexity of this real-world phenomenon, 

as advocated by Systems Theory and Systems Thinking (KEFALAS, 2011; VON 

BERTALANFFY, 1972). The application of Systems Thinking is especially useful when 

a collaborative approach among leaders and individuals must be fostered (LASZLO, 

2012). In general, many static-comparative models have already received good 

acceptance in transport research over the last years, for travel demand modeling and 

behavioral analysis. However, in our context, the focus is needed on the dynamic 

environment and strong interdependencies among decisions made at different points in 

time. In a Systems Thinking context, System Dynamics (SD) modeling stands out due to 

its adequacy for investigating the impact of policies and strategies over continuous time 

taking into account the dynamic complexity of feedback-structured systems (ABBAS and 

BELL, 1994; MAALLA and KUNSCH, 2008; SHEPHERD, 2014). 

Our qualitative model is a causal loop diagram that integrates five strategies involved in 

the decarbonization of the freight transport sector. It depicts the importance of cause-and-

effect relationships for researchers and practitioners. The first innovation of our model is 

that it provides an overview of the freight transport decarbonization system. Divided into 

connected subsystems, this approach provides the qualitative dynamic behavior of the 

whole system toward emissions mitigation. This integrated view of the system allows for 

better coordination of decarbonization strategies, highlighting the need for collaboration 

between different stakeholders to manage side effects that could reduce the impacts of 

decarbonization policies. Moreover, the model points out dynamic levers of the system 

related to the decarbonization objective. These dynamic levers are the main areas of 

action for policymakers to change the system. In summary, this qualitative analysis 

contributes to the literature by providing insight into the system of freight transport 

decarbonization. As a general qualitative model, it can be applied to any geography, since 

the assumptions taken to construct this model are not specific to a region. It can act as a 
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basis to develop quantitative and empirical SD models of freight transport 

decarbonization. 

The chapter, from this point onward, is structured as follows. Section 3.2 provides a 

literature review of system dynamics models approaching strategies for freight transport 

decarbonization. Following, Section 3.3 explains the method used and how the different 

concepts in this approach help to answer the research question. Then, Section 3.4 presents 

the causal loop diagrams that describe the system’s dynamics. The main feedback loops 

integrating the dynamics of the proposed model are presented and discussed in Section 

3.5. Finally, Section 3.6 presents the final remarks of the chapter and provides suggestions 

for further research. 

3.2 System dynamics modeling and freight transport decarbonization: the state 

of the art 

The SD methodology was developed by Jay W. FORRESTER (1961), as a basis of 

explanation to illustrate the effects of decisions in complex, dynamic systems, in which 

the time functions are emphasized. The specific feature of SD is its non-linear feedback 

structures. For this reason, the interdependencies between system submodules should be 

identified and illustrated in an iterative modeling procedure (THALLER et al. 2016a). 

ABBAS and BELL (1994) discussed and evaluated the strengths and weaknesses of SD 

concerning its suitability and appropriateness for transportation systems modeling. The 

authors stated that as transportation problems require integrating forms of knowledge as 

well as comprise long-term/short-term trade-offs, the SD modeling is well suited for 

addressing transport problems, especially the strategic studies that are concerned with 

policy analysis and decision-making. SHEPHERD (2014) presented a review of SD 

studies categorizing them by area of application in the field of transportation. After an 

analysis, he provided a summary of insights and recommendations for the future 

application of the SD approach in this field. At that time, he indicated the lack of research 

in freight transport and decarbonization using this modeling approach. After that, some 

SD models addressed specific strategies of freight decarbonization or covered a very 

particular component of the system to reduce emissions as reviewed by GHISOLFI et al. 

(2022a) and presented in Chapter 2. Table 3.1 summarizes the specific decarbonization 

strategies and policies considered in the SD models reviewed by the authors. 
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Table 3.1 – SD models for freight transport decarbonization, strategies, and policies applied. 
Decarbonization 

strategy 
Authors Policies applied 

Reducing freight 

transport demand 

ERDMANN et al. (2004) 

and HILTY et al. (2006) 
Investment in new technologies 

FREEMAN et al. (2015) Investment in technological efficiency 

KUNZE et al. (2016) Application of higher transport taxes 

THALLER et al. (2016; 

2017) 
Not considered 

AGHA et al. (2019) Increase in fuel prices 

HIDAYATNO et al. (2019) Carbon tax internalization 

ZHANG et al. (2019) Not considered 

KAR and DATTA (2020) Product prices and logistic costs variation 

Shifting freight 

to low carbon-

intensity modes 

SCHADE and SCHADE 

(2005) 

Higher transport prices (taxes); investment in 

alternative modes 

HAN and HAYASHI (2008) 
Extension of the railway and waterway network 

and imposition of fuel taxes 

BRITO JUNIOR et al. 

(2011) 

Investment in infrastructure capacities and 

governmental pressure to reduce CO2 emissions 

LEWIS et al. (2014; 2015) Investment in rail infrastructure 

YORK et al. (2017) Increasing investments in the rail network 

AZLAN et al. (2019) Promoting alternative modes, such as railway 

CHOI et al. (2019) Increasing road cost (taxation) 

DONG et al. (2019) Investment in railway infrastructure 

LIU et al. (2017; 2019; 

2021) 

Legal truck weight regulation and investment in 

railway infrastructure 

HU et al. (2020) 

Different levels of infrastructure investment 

policy, network scale, and market competitiveness 

through price adjustments 

WANG et al. (2021) Increase the use of alternative modes 

HUANG et al. (2021) 
Increasing carbon taxes and investments in the 

railway network 

Improving 

vehicle 

utilization 

DOLL et al. (2010) 
Internalization of transport external costs; 

allowance of heavier trucks 

ASCHAUER (2013) and 

ASCHAUER et al. (2015) 

Internalization of transport external costs, leading 

to more pressure to consolidate freight 

OUMER et al. (2015) Shipment consolidation 

LIU and MU (2015) Alternative truck weight regulation policies 

SIM (2017) Not considered 

MELKONYAN et al. (2020) 
Investments in digital applications for tracking and 

tracing and outsourcing the pickup to consumers 

HAMOUDI et al. (2021) 
Internalization of CO2 emissions tax; different 

levels of truck capacity utilization 

Increasing 

energy efficiency 

KRAIL and KÜHN (2012) 
Taxes on different technologies and emissions 

levels 

SEITZ (2014) 
Investments in refueling infrastructure and R&D 

technologies 

SEITZ and TERZIDIS 

(2014) 

Investment in refueling stations and alternative 

powertrains 

GENG et al. (2017) 

Speed reduction, use of shore electricity, engine 

improvement, and exhaust after-treatment 

technologies 

Promoting new 

energy sources 

FIORELLO et al. (2010) 
Incentives for fleet renewal, and increases in fossil 

fuel prices 

PURWANTO et al. (2011) 

New emission standards, penetration of alternative 

technologies, increase in fuel efficiency, and fleet 

renewal; fuel quality; incentives for low-emission 

cars 

SHAFIEI et al. (2014) 
Oil price variations, alternative fuel availability, 

and carbon taxes 
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Decarbonization 

strategy 
Authors Policies applied 

CAGLIANO et al. (2015a; 

2015b; 2017) 

Subsidies for alternative technologies and 

investment in refueling/recharging infrastructure 

MENEZES et al. (2017) 
Improving fuel efficiency and promoting the use 

of biofuels 

HADDAD et al. (2019) Not considered 

BARISA and ROSA (2018a; 

2018b) 

Fossil fuel taxes, subsidies for alternative fuels, 

investment in refueling/recharging infrastructure, 

and mandatory use of biofuels 

SETIAWAN et al. (2019) 
Efficiency improvements, and adoption of electric 

vehicles 

ROZENTALE et al. (2020) Investment in new energy sources 

ZENEZINI and MARCO 

(2020) 
Economic incentives for electric vehicles 

Source: Based on GHISOLFI et al. (2022a). 

The review of GHISOLFI et al. (2022a) concludes that previous SD models of freight 

transport systems were too narrow in their representation to study decarbonization 

strategies, especially at a country level. Although the SD literature does address 

individual decarbonization measures, there is no model which takes a system-wide 

perspective to assess by when a given level of decarbonization could be achieved for the 

system as a whole, with all measures considered together. This is an important gap since 

a narrow view of unconnected subsystems prevents the identification of the most effective 

actions and prevents awareness of the dynamic interactions between policy measures 

during the next decades. Another key concern is the current lack of transparency 

regarding the mechanisms and temporal dimension of empirical models, including the 

delay assumptions in key behavioral mechanisms. As the time for decarbonization 

measures to take effect is limited, this is an important problem for policymakers. 

The current chapter addresses the research gap reported by GHISOLFI et al. (2022a), 

regarding the lack of a comprehensive model in which several strategies interact and are 

considered simultaneously. To this end, we model the interdependencies between freight 

decarbonization strategies as well as the contribution of different policies to the total 

emissions from the freight transport sector, including any rebound effects across 

subsystems. 

3.3 Qualitative analysis approach 

The key tool of analysis is the causal loop diagram, which is useful for representing 

mental models including the feedback structure that determines the dynamic levers of the 

system (STERMAN, 2000). A causal loop diagram consists of a set of nodes and edges, 

which illustrates how different variables in a system are interrelated. Nodes represent the 
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variables and edges are the links that represent a cause-and-effect relationship between 

two given variables. The links have polarities that represent a change either in the same 

or in the opposite direction. If two variables X and Y are connected by a link (cause-

effect-relationship) then the polarity indicated by “+” means that variable Y is increasing 

when X is increasing and decreasing when X is decreasing. On the other side, the polarity 

indicated by “-” means that variable Y is decreasing when X is increasing and increasing 

when X is decreasing.  

According to YEARWORTH (2014), the key dynamic concepts that emerge from such 

diagrams and help to clarify a system’s complex behavior are closed causal loops, 

identified as either reinforcing (labeled “R” or “+”) or balancing (labeled “B” or “-”). A 

reinforcing loop indicates that a change in one direction is strengthened by increased 

change, whereas a balancing loop indicates that a change in one direction can be reversed 

with a change in the opposite direction. Thus, the reinforcing behavior among the 

different variables entails exponential growth in the system, while the balancing feedback 

leads to a goal-seeking or control behavior of the system. There are always delays in the 

feedback within a closed causal loop, which can range from small to large time intervals. 

The delay is also considered a key dynamic concept as it can make goal-seeking difficult 

to achieve. If a delay is added to the system, “the main effect is to introduce oscillation 

in the system which could be: i) damped and eventually lead to convergence on the 

desired state; or ii) un-damped and lead to a divergence in which the amplitude of the 

oscillation grows” (YEARWORTH, 2020, p. 9).  

Together, these key dynamic concepts point towards dynamic levers in the system that 

can be used to study its change and to identify promising policy measures. According to 

SENGE (1990), solutions focused on dynamic levers can lead to significant 

improvements, i.e., the best results do not necessarily come from large-scale interventions 

but can also come from small and well-focused actions (ROXAS et al., 2019). Dynamic 

levers can be understood as core symptoms, critical variables, points of intervention, 

tipping points, or simply areas where interventions are deemed most effective, where “a 

small shift in one thing can produce a big change in everything” (MEADOWS, 1991, p. 

1). MEADOWS (1999, as cited in ROXAS et al., 2019, p. 615) proposed 12 leverage 

points in a system, which were further categorized into three: “(1) physical elements (i.e., 

indicators, structures and, delays) with the weakest leverage, (2) information and controls 

(i.e., balancing/reinforcing loops and rules) with medium leverage, and (3) ideas behind 
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the system (i.e., goals) with the strongest leverage”. In this sense, dynamic levers can be 

identified as variables that: (1) are a common cause of multiple effects that can accelerate 

or decelerate the operation of a system; (2) can be influenced by an intervener, leading 

the system to major changes; (3) are the root cause characterized by being independent, 

generating significant and irreversible changes that occur when thresholds have been 

reached (ROXAS et al., 2019).  

So, we explore these dynamic levers further, by the identification of the above properties 

of the system that affect the response time of the freight transport to decarbonization 

strategies. The next section describes the model, as built up from the current literature. 

We first introduce the overall model framework and develop the subsequent parts in 

separate subsections. 

3.4 A causal loop diagram for freight decarbonization 

In this section, the developed SD model, illustrated by causal loop diagrams, is derived 

and explained. The model is divided into submodels to support its transparency and 

traceability. The submodels, represented by colored arrows in Figure 3.1, relate to 

subsystems that correspond with the five decarbonization strategies: (1) reducing freight 

transport demand (red arrows), (2) shifting freight to low carbon-intensity modes (green 

arrows), (3) improving vehicle utilization (blue arrows), (4) increasing energy efficiency 

of fleets (purple arrows) and (5) promoting new energy sources (orange arrows). The 

subsystems are interrelated and influence the output indicator, GHG emissions, placed at 

the bottom of Figure 3.1. 
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Figure 3.1 – Causal loop diagram for freight transport decarbonization system. 
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Policies are required to deal with freight external costs such as GHG emissions. The 

variable “strength of policies” is the sum of all policy instruments in the five submodels 

taking into account the gap between the real and the admissible level of GHG emissions. 

Based on STELLING (2014), we considered policies distributed in four categories: 

economic, legal, knowledge-based, and societal instruments. Economic instruments are 

all about internalizing external costs by imposing taxes, charges, fees, tax exemptions, 

subsidies, and others. Legal instruments are mandatory rules to enforce some 

decarbonization strategies such as truck restrictions (weight, size, and time/zone of 

circulation), fuel composition, and performance-based standards. Knowledge-based 

instruments can include information spread to increase customer acceptance of other 

decarbonization strategies, and Research and Development (R&D) to create new 

solutions to improve energy efficiency or find alternative energy sources. Finally, societal 

instruments are related to infrastructure investments to promote the shift from road to less 

emission-intensive modes, carbon-neutral techniques such as electrical roads, and 

recharging infrastructure for electrical vehicles. All of these policy instruments are 

indirectly linked to the “strength of policies” through feedback loops. 

Moreover, the “strength of policies” can be more or less rigid according to the established 

target or admissible level of GHG emissions. It means that policies are dynamic and can 

be changed, becoming more or less stringent over time as new needs arise, or the level of 

targeted GHG emissions changes. However, such changes in the “strength of policies” 

are subject to delays (represented by arrows with hash marks) that result from the 

decision-making process. Thus, the “strength of policies” is an important dynamic lever 

to timely achieve the freight decarbonization goal. The different decarbonization 

strategies and their dynamics are discussed in the next corresponding sections, besides 

the important variables and connections that build the structure of the model. 

3.4.1 Reducing freight transport demand 

The first decarbonization strategy is Reducing Freight Transport Demand, which analysis 

is shown in Figure 3.2. The population grows with a positive birth and mortality balance 

on the one hand and a positive migration balance on the other. Population development 

also influences the number of households. Moreover, the economic increase guarantees a 

positive employment development and the level of wages, which leads to a positive 

income development of private households and disposable income for consumption. The 
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greater disposable income reinforces the freight demand of the private households in total, 

which is differentiated in freight demand in location-bound retail branches and freight 

demand by e-commerce activities via the internet, as these two forms of consumption 

generate different last-mile logistics services (THALLER et al., 2016b, 2017).  

Another factor that influences freight demand is good prices. The prices of the products 

take into account the transport cost, which in turn, can be influenced by policy instruments 

like the internalization of emissions costs. If a price increase can be transferred to final 

consumers by the user-pays principle, the impact will depend on the price elasticity of 

each product category. According to STELLING (2014), if the taxes correspond to full 

internalization, the price increase would be substantial. 

 
Figure 3.2 – Reducing freight transport demand submodel. 

On the other hand, new consumption concepts such as the sharing economy and the 

circular economy are positive ways of decoupling GDP from freight transport demand. 

In a sharing economy, consumers prioritize usage over ownership (FRENKEN and 

SCHOR, 2017), leading to less production, consumption, and, consequently, freight 

transport demand in the whole supply chain. The circular economy emphasizes reuse, 

remanufacturing, and repair, before recycling and landfill disposal (KORHONEN et al., 

2018). MCKINNON (2018) affirms that such a principle might reduce the level of 

logistics activities by decreasing the need for the transportation of raw materials or new 

products. The sharing economy and circular economy are not yet in their maturity stage, 

however, and may take some time to unfold their impacts. 

Another example of the dynamic relationship between consumption patterns and their 

influence on freight transport demand can be seen in the increase of e-commerce during 

the COVID-19 outbreak (ARELLANA et al., 2020; BECDACH et al., 2020; LOSKE, 

2020), and freight companies had to adapt to the consumption change.  
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Regarding the dynamic levers of this submodel, delays are present in changes in 

population and economic development (GDP), as well as other delays in the adoption of 

new-economy concepts (e.g., circular economy and sharing economy), and the changes 

in consumer patterns like e-commerce. All these factors dynamically change over time 

and impact the level of freight transport demand. Although freight demand reduction 

contributes to emissions mitigation, the predicted trend is an increase in the coming years, 

more or less linearly with economic growth. Thus, additional measures will be required 

to deal with freight transport decarbonization, especially within restrictive targets such as 

net-zero emissions. 

3.4.2 Shifting freight to low carbon-intensity modes 

The second decarbonization strategy is Shifting Freight to Low Carbon-Intensity Modes 

since each transport mode contributes to fuel consumption with distinct intensities. Many 

factors influence the mode choice such as volume of goods demand, cost, flexibility, 

quality and service frequency, reliability, shipment distance, infrastructure conditions, 

transit time, cargo damage, and others (HOLGUÍN-VERAS et al., 2021). It is important 

to consider several factors that influence such a decision to identify dynamic levers. Even 

when the infrastructure is available, it may not be sufficient to achieve the mode shift goal 

due to the lack of consensus about operational standards, a failing business-economic 

rationale, or a conflict of interests between stakeholders (EUROPEAN COMMISSION, 

2016). Therefore, considering products that can be carried by different modes, the mode 

choice depends on many components, as represented in Figure 3.3.  

 
Figure 3.3 – Shifting freight to low carbon-intensity modes submodel. 
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There are seven feedback loops in this submodel. The first one (at the top of the diagram) 

shows that infrastructure investments support economic growth and, in turn, an increase 

in economic development will promote an increase in infrastructure investments. This 

reinforcement feedback loop may be weak, however, as the transport sector represents a 

small share of the whole economy (it accounted for about 5% of total Gross Value Added 

(EUROPEAN COMMISSION, 2021; UNITED STATES DEPARTMENT OF 

TRANSPORTATION, 2022)). Besides infrastructure availability, capacity, and modal 

integration, the investments also assure the maintenance operations over time to 

recuperate its wear and tear, which contributes to its suitability and quality. As 

demonstrated by the dominance of road transport, these different types of expenditure and 

mode attractiveness can end up being self-reinforcing (represented by the four positive 

feedback loops in the middle of the diagram). The next and only balancing feedback loop 

of this submodel relates freight demand by mode, congestion, transport cost, and mode 

attractiveness, showing the effect of congestion on transport demand. The last 

reinforcement feedback loop of this submodel (placed at the bottom of the diagram) 

relates transport cost, mode attractiveness, and freight demand by mode, showing the 

effects of economies of scale (the more one mode is used, the more attractive it becomes 

due to costs savings). These behaviors can be used as part of policies to promote low 

carbon-intensity modes.   

Many delays are identified since the implementation of infrastructure is subject to long 

and infrequent decision processes, and unforeseen circumstances. The main causes for 

policy-related delays in this phase are postponements in design information, the lengthy 

duration for approving the project, and inadequate site management. Furthermore, the 

delay time is also dependent on the type of project undertaken. Maintenance projects 

generally experience the most severe delays since they are associated with unpredictable 

and unforeseen site conditions that often require the relocation of utilities and the 

redirection of traffic flow (ADAM et al., 2017). 

Economic instruments for the internalization of external costs, such as infrastructure taxes 

or subsidies could also play a role in the mode choice process. ARENCIBIA et al. (2015) 

confirmed the benefit of policies in favor of charging for infrastructure use, as the actions 

with the greatest impact on the deviation of traffic to alternative modes are those that 

affect the cost of transportation. Conflicts of interest between stakeholders can be raised, 

once road taxation is not differentiated by commodity transported (RIGOT-MÜLLER, 
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2018), and therefore, such taxes affect manufacturing products with lower values. 

Additionally, an uneven charging for infrastructure use between modes can benefit one 

mode over another in terms of operating costs and, consequently, impact their 

attractiveness and unbalance the use of less polluting modes, as stated by the 

COMMUNITY OF EUROPEAN RAILWAY AND INFRASTRUCTURE 

COMPANIES – CER and EUROPEAN RAIL FREIGHT ASSOCIATION – ERFA 

(2019). Such conflicts are intrinsic to the decision-making process and can delay the mode 

shift and decarbonization goals. 

Dynamic complexity, and consequently the time delays involved in the mode choice 

process, first depends on infrastructures as well as their accessibility, which can take 

significant time to be made available either due to bureaucratic concession or bidden 

issues, project or operational delays. Therefore, the time to implement this 

decarbonization measure may differ significantly between countries where infrastructure 

is operational or not. Second, the choice of less-polluting modes is challenging even 

where the infrastructure is already available, considering the mode attractiveness through 

cost-utility and the delay with which users shift from one transport mode to another. The 

actual decision to choose a mode of transport lies with companies, where mode 

attractiveness determines mode utilization. Delays here can amount to years, if not 

decades, as companies seldom revisit their choice of mode, if at all. Apart from the low 

frequency of decision-making, such delays occur due to a lack of readiness to adopt 

innovations, limited confidence in the future possibilities of new transport modes, 

difficulties in adapting the logistics organization, or simple inertia. FERRARI (2014) 

addressed this problem through dynamic cost functions. The application of his model has 

shown that different evolutions of modal splits in these places occurred because transport 

costs evolve as a consequence of the overall freight flow increase, the users’ attitudes, 

and the changes in the transport mode technology and organization. The interaction 

between these causes determines the evolution of the transport costs, and thus, along with 

the users’ delay, the evolution of the modal split (FERRARI, 2014).  

HOLGUÍN-VERAS et al. (2021) also argue that the process of freight mode choice is a 

dynamic system, as its functioning is influenced by the ups and downs of markets as well 

as by the interactions among the multiple agents involved. The authors estimated discrete 

choice models to econometrically assess the influence of transit time, freight rate, and 

generalized cost over the dynamics of mode choice.  
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In summary, promoting alternative freight modes to trucking will require different efforts 

such as subsidies, changing companies' preferences and attitudes, enacting faster and 

more frequent decision-making processes, and understanding needed innovations. 

3.4.3 Improving vehicle utilization 

The third decarbonization strategy is Improving Vehicle Utilization. Shipping 

requirements are governed by an operating logistics concept (e.g., Just in Time, Vendor 

Managed Inventory, and Just in Sequence), which influences the order cycle frequency 

and amount per order cycle (ASCHAUER, 2013). Figure 3.4 shows the related variables 

that form this submodel structure. 

 
Figure 3.4 – Improving vehicle utilization submodel. 
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transport a certain amount of load, which reduces costs, fuel consumption, and emissions 

(LIU et al., 2017). This relationship gives an upward effect on shipment sizes and vehicle 

loading, forming a reinforcement feedback loop.  

Besides shipment sizes and volumes, vehicle loading also depends on vehicle capacity 

and cargo consolidation, the number of distribution centers, and unavoidable empty runs. 

MCKINNON and GE (2006) present several reasons and incentives for the decline in 

empty runs in the United Kingdom, such as outsourcing of haulage operations, multiple 

destination trips, reverse logistics, and the “digital freight matching” platforms, which 

usage will increase in the future with the digitalization of the sector. This new type of 

platform could support a movement for collaboration in fully open and connected 
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networks as envisioned in the so-called Physical Internet System (MONTREUIL, 2011). 

This “hyperconnected” system could result in GHG reductions of up to 45% (KIM et al., 

2021), but it may need a long time (estimated 2040) to materialize due to the many 

changes needed in standards, procedures, and technology (ALLIANCE FOR 

LOGISTICS INNOVATION THROUGH COLLABORATION IN EUROPE – ALICE, 

2020). The asset utilization can also be improved by local or collaborative procurement 

by companies (REZAEI et al., 2020), which requires major changes in sourcing practices, 

or the influence of governments to internalize the external costs of trade. In general, 

companies will decide more easily to change the sourcing location than to collaborate 

with other companies, as the latter is not part of their regular decision-making practice. 

All these factors depend on the frequency with which decisions are taken by the 

companies regarding the organization of physical distribution and the deployment of their 

assets. 

Size and weight regulations to prevent the overloading of freight vehicles, and to avoid 

or minimize external costs like accidents and wear and tear, are needed in some countries 

that heavily rely on roadways and face poor pavement conditions, leading to high logistics 

and maintenance costs (LIU et al., 2017). On the other hand, the efforts to reduce truck 

overloading increase transport costs and undermine emissions mitigation due to the 

increased number of trips. 

Beyond the number of trips, freight vehicle mileage is also influenced by the origin and 

destination distance, and route optimization. An option to reduce freight vehicle mileage 

is to involve the collaboration of the end consumer in the fulfillment of the last mile. 

HALLDÓRSSON and WEHNER (2020) claim that energy could be saved in last-mile 

fulfillment when goods are carried as far as possible collectively down in the supply chain 

in commercial vehicles with high fill rates, and the end consumer should be responsible 

for only the last part of the last mile. 

Like the previous decarbonization strategies, efficient utilization of the capacity of the 

vehicles has the potential to reduce emissions, but not to get rid of them altogether. The 

time to implement this strategy in the future will depend on how companies change their 

logistic decisions over time. 

3.4.4 Increasing energy efficiency 
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The fourth decarbonization strategy is Increasing Energy Efficiency since it impacts the 

amount of fuel consumed by conventional internal combustion engine (ICE) vehicles. 

The fuel consumption will depend on the vehicle technologies in use and the driving 

practices, as demonstrated in the causal loop diagram of Figure 3.5. 

 
Figure 3.5 – Increasing energy efficiency submodel. 

Vehicle technologies that offer potential energy savings are related to weight reduction, 

aerodynamic drag reduction, rolling resistance, and friction improvements (FOLKSON, 

2014). Some of these can be deployed as retrofit technology on the existing ICE vehicles, 

which brings an early impact. Powertrain technology includes hybrid engines, 

battery/plug-in/fuel cell electric vehicles, and biofuel addition (FOLKSON, 2014). The 

dynamic of their introduction is unlike that of conventional technology, due to the need 

to develop infrastructure networks for battery recharging/swapping (JUAN et al., 2016), 

and suitable rechargeable energy storage systems (PEREIRINHA et al., 2018). The gains 

of efficiency improvement are observed in the reduction of fuel consumption, present in 

the next submodel. 

The fleet renewal process is another way to promote energy efficiency improvement. The 
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setting of organizational buying processes, which influences adoption behavior and the 

underlying criteria in a process-orientated way (SEITZ, 2014), including higher 

specificity of demand, a higher number of persons involved, a stronger tendency towards 

rationality and a longer purchase decision process (WEBSTER and WIND, 1972). The 

market share of conventional or alternative powertrain concepts is a function of an 

organization’s familiarity, perceived technological attractiveness, and vehicle availability 

(SEITZ and TERZIDIS, 2014). The vehicle purchase is defined by the fleet gap, that is, 

the difference between the current fleet and the ideal fleet to attend to the demand, 

forming a balancing feedback loop. Vehicle purchases also depend on fleet costs and 

vehicle purchase prices. Technology solutions to improve vehicle efficiency make them 

more expensive than ICE vehicles. Significant reductions in purchase prices of new 

technology solutions will be necessary before they make a relevant contribution to total 

vehicle sales. This is a vicious circle as costs will not reduce until sales increase, and sales 

will remain low until costs come down (FOLKSON, 2014), as demonstrated by the 

reinforcement feedback loop. Subsidies for alternative technologies and taxes for old 

fleets may be needed to promote the entrance of more efficient vehicles into the market.  

The fleet renewal process is also related to the scrappage of old vehicles, which depends 

on the vehicle’s age, mileage, and residual value (HUO and WANG, 2012). While the 

decision to replace a vehicle with a greener model ultimately rests with the commercial 

entity that owns or operates the fleet, governments can regulate schemes to encourage the 

replacement of inefficient vehicles and offer green transport subsidies as dynamic levers 

to encourage the adoption of the most up-to-date technologies. Another important factor 

impacting fuel consumption is the vehicle’s state of repair since poorly maintained 

vehicles consume more fuel (GREENE and FAÇANHA, 2019). Legal instruments 

regulating maintenance frequencies and vehicle taxes differentiated according to 

environmental and safety performance could also be taken as dynamic levers to increase 

the standard of the vehicles, induce fleet renewal, and hence decrease emissions 

(STELLING, 2014). 

The urgent need to promote the entry of new technology vehicles into the market results 

from the renewal process that generally takes a long time, considering vehicle economic 

lifetimes from six to more than 20 years (EUROPEAN AUTOMOBILE 

MANUFACTURERS ASSOCIATION – ACEA, 2021). Progress towards renewing 

fleets has been uneven across countries, with developed nations adopting the cleanest 
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Euro VI equivalent standards, while most developing countries still operate pre-Euro 

class vehicles (MILLER and JIN, 2018). Developing countries face challenges in the fleet 

electrification process such as the development of battery charging networks, grid 

capacity, and affordability of vehicles. The import market of used ICE trucks from Europe 

and North America at cheaper prices tends to discourage developing countries to switch 

to low-carbon vehicles. Moreover, the longer life of low-carbon trucks tends to delay their 

export as used vehicles, and the scarcity of raw materials and reliance on recycling will 

discourage the export of used batteries and fuel cells (MCKINNON, 2020), making the 

process of decarbonizing freight even more challenging for developing countries. 

The delays related to technology development indicate a slow cycle and new alternative 

technologies will likely take decades to develop. The USA, Japan, and China dominate 

R&D funding for key climate technologies (UNITED NATIONS FRAMEWORK 

CONVENTION ON CLIMATE CHANGE, 2017) while developing countries lag in non-

renewable innovation. Depending on the availability of technologies across borders, this 

aspect may impact the global dynamics of the implementation of decarbonization 

policies.  

The dynamic components of this submodel are the current fleet, vehicle purchase, and 

fleet scrappage. The reinforcing feedback loop between vehicles purchase and their prices 

shows that new technologies will not get into the market without incentives for users’ 

acceptance and will not even be produced without a promising market outlook for vehicle 

manufacturers. It may take 5-15 years, in some cases longer (ACEA, 2021), before 

innovations can penetrate the market, which means that the effects on the climate will 

take at least this long to materialize. To deal with all presented delays, implementing 

specific dynamic levers such as policies for fleet renewal are needed.  

3.4.5 Promoting new energy sources 

The fifth decarbonization strategy is Promoting New Energy Sources and alternative fuels 

with low carbon density to mitigate emissions. We considered alternative fuels those zero 

emissions such as electrification and hydrogen, as well as low-intensity emissions fuel, 

such as biofuels. Figure 3.6 shows the variables considered in this submodel. 
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Figure 3.6 – Promoting new energy sources submodel. 

The adoption of one type of fuel over another depends on (1) financial attributes (vehicle 

purchase price, fuel price, and efficiency); (2) technical attributes (driving range, 

recharging time, performance, brand, diversity, and warranty); (3) infrastructure 

attributes (charging/refueling infrastructure availability); and (4) policy attributes 

(reducing purchase price, purchase tax, annual tax, and toll) (LIAO et al., 2017). The two 

reinforcement feedback loops show that prices of both fossil and alternative fuels have to 

be considered as they compete and influence the adoption of one over another. Moreover, 

the gradual availability of charging or refueling service points is a key factor for 

successful alternative fuel adoption over time. 

Fuel price depends on production or import costs, and transport may compete with other 

sectors, bringing implications for alternative energy supply systems. For example, the rise 

in oil prices led to a sharp increase in biofuel production. However, some commodities 

can be used either as food, feed or to make biofuels. Therefore, food versus fuel is the 

dilemma regarding the risk of diverting farmland or crops for liquid biofuel production 

to detriment of the food supply on a global scale (DEMIRBAS, 2011). The greater the 

alternative fuels subsidies and their demand, the greater will be its competitiveness for 

energy resources in other sectors (MANSSON, 2016), which brings a complex dynamic 

among the stakeholders involved, affecting the adoption of biofuels over time. A similar 

thing happens to hydrogen, for which the transport sector seems to be less interesting than 
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the heavy industry market. Even when green hydrogen production costs turn out to be 

more competitive by 2030, according to the INTERNATIONAL RENEWABLE 

ENERGY AGENCY – IRENA (2020), there will be competition between these sectors, 

driving up the price of hydrogen for transport. Such decades-long transition programs 

should take these dynamics into account and make them transparent for the transport 

sector.  

Fuel taxation for fossil fuels or subsidies for alternative fuels may stimulate the adoption 

of renewables. Raising diesel prices can be an effective approach when aiming to speed 

up alternative fuel market diffusion (CAPROS et al., 2016). Legal instruments are also 

dynamic levers to promote the alternative fuels penetration rate into the market such as 

the obligation schemes or blending targets, e.g., to include a certain percentage of 

biodiesel in fuels (STATTMAN et al., 2013). FOLKSON (2014) highlights the 

compatibility of renewable liquid fuels with current technologies as a benefit. TEIXEIRA 

et al. (2020) discuss preferences for business-as-usual fuels over more environmentally 

friendly options. Liquid alternative fuels can be deployed faster than technologies that 

require heavy investments in technology and infrastructure. However, biofuels will not 

be enough to meet emission reduction targets and there is an additional need for 

alternative electrified powertrains with noteworthy emission reduction potentials 

(PLÖTZ et al., 2019). In other words, accelerating the adoption of low or zero-carbon 

technologies is essential to achieving deep system decarbonization. Many factors 

influence their adoption, such as users’ preferences, positive experiences of other 

companies, and payback time (BOER et al., 2013). High costs, limited range, long 

recharging times, and a lack of adequate fast-charging networks are some of the 

drawbacks still related to cleaner technologies. A slow entrance into the market of new 

technologies hinders the option to purchase modern second-hand vehicles, and the barrier 

of their high costs will remain until this secondary market is available. It is probably for 

this reason that adoption has only started in countries with generous subsidy schemes. In 

addition, the climate-mitigating effect of these vehicles will only be effectuated once 

green energy sources become available at the scale needed. The modeling of these 

processes in the decades ahead could help to optimize the subsidy policies.  

3.5 Discussion 

Based on the proposed conceptual dynamic model for freight transport decarbonization, 

in this section, we discuss the feedback loops between the submodels that integrate the 
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dynamics of the system. An important aspect of the proposed model worthy to highlight 

is that the submodels of each decarbonization strategy are interconnected, through 

shadow variables, forming feedback loops that are not directly visualized. This approach 

is important to show the conflicts and affinities that can exist between the different 

decarbonization strategies since many efforts are required to decarbonize the freight 

sector, and interventions can result in side effects not understood when implementing 

each strategy individually. The feedback loops that integrate the proposed model are 

presented in Figure 3.7. 

 
Figure 3.7 – Feedback loops between the submodels of the freight transport decarbonization 

system. 

The first four indirect feedback loops identified between the submodels describe the 

rebound effect of more efficient freight transport, leading to transport cost reductions, 

lower products prices, and thereby increased demand, due to the effect of cost elasticity 

of road transport performance (JONG et al., 2010; FERRARI, 2016), which reinforces 

efficiency due to economies of scale. Transport efficiency is expressed in terms of better 

vehicle utilization, freight demand by mode, vehicle efficiency, and fuel prices, 

dynamically linking the related decarbonization strategies over time. 
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The first feedback loop shows that the increase in vehicle loading reduces transport costs, 

influencing product prices, goods demand, freight demand by mode, shipment amount, 

and vehicle loading in a reinforcing loop: 

i. vehicle loading ⟶− transport cost ⟶+ product prices ⟶− goods demand ⟶+ 

freight demand by mode ⟶+ shipment amount ⟶+ vehicle loading (reinforcing 

loop). 

The second feedback loop represents the dynamics of vehicle efficiency gains, reducing 

fuel use, and influencing fuel price, fleet costs, vehicle loading, transport costs, product 

price, goods demand, and freight demand by mode, leading to a reinforcement of vehicle 

efficiency: 

ii. vehicles efficiency ⟶− fuel use ⟶− fuel price ⟶+ fleet cost ⟶+ vehicle loading 

⟶− transport cost ⟶+ products price ⟶− goods demand ⟶+ freight demand 

by mode ⟶+ vehicles efficiency (reinforcing loop). 

The third feedback loop indicates that both fossil fuel and alternative fuel prices increase 

the fleet cost that induces better vehicle utilization, influencing transport costs, products 

price, goods demand, freight demand by mode, shipment amount, vehicle loading, 

number of trips, freight vehicle mileage, the fleet in use, and fuel use, leading to a 

reinforcing loop of fuel prices: 

iii. fuel price ⟶+ fleet cost ⟶+ vehicle loading ⟶− transport cost ⟶+ products 

price ⟶− goods demand ⟶+ freight demand by mode ⟶+ shipment amount 

⟶+ vehicle loading ⟶− number of trips ⟶+ freight vehicle mileage⟶+ fleet in 

use ⟶+ fuel use ⟶− fuel price (reinforcing loop). 

The fourth feedback loop shows that the freight demand by mode also influences 

congestion, transport cost, product price, goods demand, and freight demand by mode. 

Especially for roadways, the increase in demand can lead to congestion given the limited 

capacity of roads, discouraging the use of this transport mode:  

iv. freight demand by mode ⟶+ congestion ⟶+ transport cost ⟶+ products price 

⟶− goods demand ⟶+ freight demand by mode (balancing loop). 

The fifth feedback loop relates freight demand by mode, economies of scale, transport 

costs, product prices, goods demand, and freight demand by mode. This loop is especially 

important for alternative modes (railways and waterways) as the increase in freight flow 
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and service frequency play an important role in the reinforcement of their use due to 

economies of scale: 

v. freight demand by mode ⟶+ economies of scale ⟶− transport cost ⟶+ products 

price ⟶− goods demand ⟶+ freight demand by mode (reinforcing loop). 

These five feedback loops are particularly important for the first stage of decarbonization, 

as efficiency improvements are interesting, not only because of their environmental 

benefits but also because they are economically profitable. As the efforts to reduce CO2 

emissions become more expensive, transport costs will not be reduced anymore (or will 

even increase). Therefore, dynamic levers should be combined to reduce the rebound 

effect of efficiency gains on the freight transport demand to mitigate emissions.  

The sixth and last feedback loop shows that the vehicle loading is directly related to the 

wear and tear of the infrastructure used. Then, wear and tear influences infrastructure 

quality, transport costs, mode attractiveness, freight demand by mode, shipment amount 

and finally returning the effect to vehicle loading in a balancing feedback loop: 

vi. vehicle loading ⟶+ wear and tear ⟶− infrastructure quality ⟶− transport costs 

⟶− mode attractiveness ⟶+ freight demand by mode ⟶+ shipment amount 

⟶+vehicle loading (balancing loop). 

Since wear and tear mostly affect the roadway mode, this feedback loop indicates that 

increasing truck loading undermines pavement conditions and the attractiveness of 

roadways. The effect of this loop on roadway use will depend on many other factors 

outside the loop. Moreover, this effect is considered negligible for railways and 

waterways. 

In summarizing, our dynamic causal loop diagram contributes to understanding how 

complex patterns of freight decarbonization are as an endogenous consequence of the 

structure of a system ruled by multiple non-linear feedbacks, and allowing for strategy 

and policy analysis. The broad boundary model captures several of the most important 

feedbacks governing the behavior between the freight demand patterns, choice of 

transport modes, utilization of vehicle capacity, fleet efficiency improvement, and 

alternative fuel diffusion. Although no quantitative results are provided at this stage, this 

comprehensive view of the freight decarbonization system, provided by the qualitative 

model, underscores the importance of applying a set of policies rather than isolated 

actions. For example, it would not be enough just to promote policies to encourage low-
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carbon technologies, it is also necessary to impose restrictive policies on internal 

combustion vehicles so that the environmental and economic advantages are reinforced 

in a combined way. Another example that highlights this aspect is the rebound effect of 

road transport efficiency increase, which ends up reducing costs and increasing demand. 

In this sense, it is important to have demand management policies, so that the rebound 

effect does not eliminate the environmental advantages obtained by increasing efficiency. 

3.6 Final remarks of the chapter 

In this chapter, a causal loop diagram for studying the dynamics to decarbonize the freight 

transport system has been developed. The contributions of this model can be summarized 

as follows: 

• The model provided an overview of the freight transport system. This approach 

shows that the system is not composed of isolated subsystems, but that they 

interact with each other, providing the dynamic behavior of the whole system; 

• The model linked five decarbonization strategies, showing the dynamics and 

feedback loops between their main components to evidence that these strategies 

affect each other in a reinforcing or balancing way; 

• The model pointed out the dynamic levers as policies to promote or stimulate 

decarbonization, which should be the focus of policymakers; and 

• The model provides an integration of distinct decarbonization strategies 

subsystems allowing more in-depth studies and filling a gap identified in the 

literature, which collaborates with the developments in this academic field. 

The main dynamic levers identified in the proposed causal loop diagram are directly and 

indirectly related to policies’ implementation and divided into economic, legal, social, 

and knowledge-based instruments, such as taxes or subsidies, R&D, information, and 

maturation of new technologies, infrastructure investments for alternative modes or more 

efficient vehicle and fuel adoption. Besides the decarbonization strategies and specific 

policies within each strategy, acting as leveraging points, the identified feedback loops 

are also dynamic levers that show how the whole system is connected. It shows the 

policymakers the possible indirect side effects of their policies that could defeat the 

desired results. All of these dynamic levers take part in the system’s change over time, 

affecting the freight transport demand, the infrastructure used, the fleet technology, and 

how its use is optimized.  
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Although full decarbonization might only be achieved with a radical technological 

change, the presented strategies all contribute toward freight transport decarbonization. 

Given the magnitude of the emissions reduction required over the next few decades, 

decarbonization must be approached systematically, exploiting all the opportunities. In 

this sense, the proposed model contributes to showing the big picture of the system with 

its feedback loops and dynamic levers which are critical to achieving the desired results.  

This qualitative analysis contributes to the literature with insights about the dynamics of 

the implementation of decarbonization strategies that can delay or speed up the system’s 

change over time due to the behavior of exponential growth or balancing feedback loops 

(polarities are an important result of our work). In this sense, this work contributes, in a 

qualitative way, to close the literature gap of a model that integrates the dynamics of 

different decarbonization strategies, as highlighted in the literature review (GHISOLFI et 

al., 2022a), presented in Chapter 2. However, we recognize that with the current work it 

is not possible yet to set priorities for policies, a quantitative model simulating their 

impacts within the system is required.   

For further research, this causal loop diagram should be converted into an empirical 

quantitative model, and scenarios should be simulated considering uncertainties about 

technology, policies, lobby practice, regulatory pressure, and market acceptance. As a 

key factor for new technologies adoption, the market acceptance, as well as the 

organizational buying process and the behavior analysis, should be further investigated 

for a more reliable and holistic understanding of the market penetration of alternative 

powertrain concepts in the market of heavy commercial vehicles.  

As a general qualitative model, it can be applied to any geography, since the assumptions 

taken to construct the model are not specific to a region. However, as the contexts of 

countries or regions differ, these should be considered in the quantitative approach to 

show the effect of decarbonization strategies implemented in distinct realities. For 

example, besides mandatory regulations, some complementary policy instruments, 

implemented voluntarily, have emerged in some countries to encourage sustainable 

freight practices, such as the SmartWay program in North America (BYNUM et al., 

2018), the China Green Freight Initiative in Asia (LIU et al., 2019), the Lean and Green 

program in Europe (KALEDINOVA et al., 2015), and the “FRET21” in France 

(TOURATIER-MULLER and ORTAS, 2021). However, other countries differ from this 

reality. In India, KUMAR (2021) underlines a lack of coordination between freight 



 

69 
 

logistics organizations and public entities. In Brazil, apart from the use of enforcement 

legislation, FROIO and BEZERRA (2021) point out the difficulties of involving shippers 

in sustainable freight projects, while other policies such as increasing the use of biofuels 

can be more easily explored due to the production facilities in this country. All these 

context-specificities should be considered. 

Based on the conceptual model presented in this chapter, the next chapter proposes a 

simulation model that numerically investigates the impacts of some freight 

decarbonization policies, and how their related temporal factors influence the emissions 

mitigation results.  
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4 Dynamics of freight transport 

decarbonization system: a simulation model 

This chapter describes a mathematical model for the freight transport decarbonization 

system through stock-and-flow diagrams of the System Dynamics methodology. Based 

on the conceptual model proposed by GHISOLFI et al. (2022b) and presented in Chapter 

3, we have made some assumptions to simulate four different policies. Using a broad 

conceptual model as a basis, the present simulation model numerically investigates the 

temporal dynamics involved in the implementation process of specific freight 

decarbonization measures, partially contributing to closing this gap in the literature, as 

pointed out by GHISOLFI et al. (2022a) and presented in Chapter 2. The model offers a 

perspective on the need to strengthen policies in the coming years and decades if we are 

to decarbonize freight transport. In addition, the results showed that the sooner the 

combined measures are implemented, the greater the potential for reducing emissions in 

the long term, contributing to the achievement of audacious environmental goals for the 

sector. This chapter was designed (text, format, structure) aiming to submit it to a 

scientific journal. 

 

4.1 Introduction 

Freight transport is the reflection of a dynamic economy. However, this sector also brings 

emissions, traffic, and congestion among other negative externalities. The 

INTERNATIONAL TRANSPORT FORUM (ITF, 2015) estimates that international 

trade-related freight transport accounts for around 30% of all transport-related CO2 

emissions from fuel combustion, and more than 7% of global emissions. According to the 

INTERNATIONAL ENERGY AGENCY (IEA, 2022), following a net zero emissions 

target by 2050 requires transport sector emissions to fall by about 20% by 2030. 

Achieving this drop would depend on a broad set of policies, such as the rapid 

electrification of road vehicles, operational and technical energy efficiency measures, the 

commercialization and scale-up of low-carbon fuels, and policies to encourage a modal 

shift to lower carbon-intensive travel options. However, achieving the desired results 
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requires articulating multiple stakeholders’ interests to design and implement actions 

consistent with long-term decarbonization goals (BATAILLE et al., 2016). 

As a dynamics complex system, freight transport has multiple agents making decisions 

that can impact the whole system through feedback responses. Regardless of the 

decarbonization strategy adopted, decision-makers must be aware that their policies, 

decisions, and actions may have second-order effects, leading to the need for a system 

macro perspective (GHISOLFI et al., 2022b). Besides the impacts of second-order 

effects, the system’s dynamics are also determined by the speed of change, i.e., the time 

that each decision or action takes to be implemented and take effect. For example, 

developing alternative fuel vehicles (AFV) is a relevant strategy for freight 

decarbonization, but knowing when the technologies will be adopted and used on a large 

scale is critical for crafting more realistic decarbonization targets and addressing the 

problem more efficiently. 

Developing economies emerge as interesting cases to analyze, since the freight demand 

in these countries is expected to increase on a larger scale (ITF, 2019), while social, 

economic, and political constraints impose unique conditions for policy design, 

commonly with fragmented logistics operations, inadequate infrastructure, and a lack of 

proper policy making (DÍAZ-RAMIREZ et al., 2017). Within the current commitments 

of the Brazilian Government to international agreements, in terms of emissions 

reductions, some policy initiatives have been implemented. Yet, “How will these policies 

contribute to the goal of decarbonization in the long term?”, “How long will it take?” and 

“What are the differences among the policies, in terms of their effectiveness?” are 

questions that remain unanswered. In this sense, this chapter aims to investigate the 

impact of policies in the long term for freight transport decarbonization in Brazil. 

To do so, we have taken a systems approach that focuses on the dynamics and 

interdependencies among policies and decisions made at different points in time. System 

Dynamics (SD) modeling stands out due to its adequacy for investigating the impact of 

policies and strategies over continuous time taking into account the dynamic complexity 

of feedback-structured systems (ABBAS and BELL, 1994; MAALLA and KUNSCH, 

2008; SHEPHERD, 2014). 

The remainder of this chapter is organized as follows. Section 4.2 brings a literature 

review of different approaches that address the dynamics of the freight transport system, 
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and justifies the choice of the SD methodology for this research. Section 4.3 presents the 

material and methods with a geographical background of the chosen case study for the 

model application, the qualitative research conducted through interviews with experts, 

the quantitative SD modeling, data used, model tests, and sensitivity analysis. Section 4.4 

presents the scenarios set and results of the simulations. Section 4.5 brings the discussions 

while Section 4.6 presents the final remarks of the chapter and indicates future research 

directions. 

4.2 Literature Review 

Dynamics are generally defined as the forces or properties which stimulate growth, 

development, or change within a system or process. It can be understood as the multiple, 

mutual, and continuous interactions of all the levels of the developing system, leading to 

a nested process that can unfold over many time scales (THELEN and SMITH, 1998). 

The need to understand the dynamics of freight systems has grown in importance since 

policies need to be adapted to time-definite objectives like decarbonization. Therefore, 

we need to understand who takes decisions about which aspects of logistics and when 

(i.e., in what sequence and with which frequency) (TAVASSZY, 2020). In this sense, 

RIOPEL et al. (2005) presented 48 interrelated logistics decisions at the strategic 

planning, network, and operational levels that, directly or indirectly, drive freight 

transport. Specifically in the transportation level of logistics, eight decisions can be under 

concern (transportation modes, types of carriers, carriers, degree of consolidation, 

transportation fleet mix, assignment of customers to vehicles, vehicle routing and 

scheduling, and vehicle load plans). Although the framework proposed by RIOPEL et al. 

(2005) emphasizes the multiple links and the complexity of the resulting logistics decision 

(i.e., for each decision, the authors show the preceding logistics decisions, as well as 

additional information required to make the decision), the related temporal effects and 

dynamics in a comprehensive study are still lacking (TAVASSZY, 2020). 

To address and model the dynamics of a system, we can take different approaches such 

as time series models, agent-based modeling (ABM), and system dynamics (SD). Time 

series is defined as the sequence of observations of a given variable over time. In 

empirical economic analysis, for example, it is needed to study the relevant links among 

the observations, helping decision-making and forecasting future values 

(GOURIEROUX and MONFORT, 1997). ABM, in turn, is a stochastic bottom-up 
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modeling approach, based on a set of agents and interaction rules in each environment. 

Agents are discrete individuals with given characteristics and behavioral rules. ABM 

models can express and characterize heterogeneity, including spatial interactions within 

and between agents (MAIDSTONE, 2012). Thus, ABM is the preferred method when 

complex events exist due to heterogeneous actors. On the other hand, SD is a 

deterministic top-down modeling approach that describes systems from a wide 

perspective, focusing on dynamic complexity which arises from the system’s structure, 

feedback, and time lags (SHEPHERD and EMBERGER, 2010). The SD approach largely 

depends on assumptions about the homogeneity of modeling entities (TEOSE et al., 

2011), and it is used for policy analysis and design in systems with information feedback, 

interdependence, and mutual interaction (LEWE et al., 2014). Thus, SD provides a 

structured framework, through which large-scale systems can be modeled, analyzed, and 

tested (ABBAS and BELL, 1994; SHEPHERD, 2014). This method evidences the 

relationship between interrelated variables (cause and effect) and demonstrates the impact 

of variables that change in different timeframes. 

Regarding time-series and ABM models to represent the dynamics of freight transport 

systems, different aspects were addressed by the models in the literature. HOLGUÍN-

VERAS (2002) modeled the commercial vehicle choice process using a discrete-

continuous choice model. Later, HOLGUÍN-VERAS et al. (2021) also used discrete-

continuous choice models to represent the choice of rail or truck for different commodity 

types, and different combinations of independent variables and weighting schemes.  

DI FEBBRARO et al. (2011) proposed a dynamic model for a freight delivery plan which 

is applied until an external event occurs and a new freight delivery plan is needed. To 

improve the financial model of an urban distribution center, VAN DUIN et al. (2012) 

investigated a dynamic fee for its usage. The model provided insights into the dynamic 

behavioral interaction between stakeholders in city logistics. 

FERRARI (2014) presented a dynamic modal split in a multimodal freight transport 

system, which supposes that the evolution over time of transport demand is accompanied 

by a corresponding evolution of the transport mode characteristics. The model is based 

on the paradigm of random utility but introduces the dynamic cost functions and takes 

into account the users’ delays to switch from one transport mode to another. ANAND et 

al. (2014) developed an ABM for analyzing the urban freight delivery processes, 
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implementing a last-minute order scenario, which reduces the number of trucks and the 

total distance traveled in the urban system.  

SCHRÖDER and LIEDTKE (2017) proposed a multi-agent simulation that consists of 

disaggregate traffic. Congestion effects and resulting delayed arrival times are fed back 

into the demand models where agents can evaluate their plans with individual utility/cost 

functions quantifying travel times and distances, activity durations as well as delayed 

arrival times. Based on the agent’s experiences in previous iterations, it can choose a 

different route, another transport mode, departure times, or vehicle (fleet size, vehicle 

types, and activity sequences). 

LEPITZKI and AXSEN (2018) developed a dynamic vehicle choice model that 

incorporates technology, costs, changes in travel demand, and endogenous fuel supply 

decisions. In each time step, a portion of the existing vehicle stock is retired, and demand 

for new vehicle technologies is assessed. The model simulates how heterogeneous 

consumers purchase different vehicle technologies based on capital, energy, maintenance, 

and intangible costs.  

REIS (2018) proposed an ABM of a freight transport market in which agents interact 

through simulated auctions of transport contracts in which a dynamic price calculation 

mechanism has been devised to simulate agents’ specific pricing strategies. A discrete 

trust function was proposed to simulate the level of trust between a shipper agent and 

every freight forwarder agent. GATTA et al. (2020) developed an ABM to simulate the 

optimal last-mile delivery process from the supermarkets to final consumers to evaluate 

the potential of e-grocery adoption. 

Regarding SD models, ABBAS and BELL (1994) discussed and evaluated their strengths 

and weaknesses in terms of suitability for modeling transport systems. As transport 

problems require ways of integrating knowledge as well as including long/short-term 

trade-offs, SD modeling is suitable for addressing many transport problems, especially 

strategic studies that are concerned with policy, analysis, and decision making as 

reviewed by SHEPHERD (2014). 

Concerning the freight emissions problem, in the last years, some SD models addressed 

specific strategies or covered a very particular component of the system, as pointed out 

by GHISOLFI et al. (2022a) and presented in Chapter 2. After a systematic review of SD 

models covering decisions about transport demand management (FREEMAN et al., 2015; 
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KUNZE et al., 2016; AGHA et al., 2019; HIDAYATNO et al., 2019; KAR and DATTA, 

2020), mode choice (YORK et al., 2017; CHOI et al., 2019; WANG et al., 2020), assets 

capacity utilization (ASCHAUER et al., 2015; SIM, 2017; MELKONYAN et al., 2020), 

use of energy-efficient technologies (KRAIL and KÜHN, 2012; SEITZ, 2014; SEITZ and 

TERZIDIS, 2014) and alternative fuels (SHAFIEI et al., 2014; CAGLIANO et al., 2017; 

MENEZES et al., 2017; ROZENTALE et al., 2020), GHISOLFI et al. (2022a) concluded 

that the SD models referring to the decarbonization of freight transport have strict limits 

to represent the system. In this context, and using a qualitative approach of causal loop 

diagrams, GHISOLFI et al. (2022b) presented a broad model that integrates five different 

decarbonization strategies, showing their affinities and synergies within the system. This 

model shows the importance of policymakers approaching the decarbonization problem 

collaboratively and systemically, avoiding their actions being offset due to feedback loops 

within the system.  

Another conclusion from the literature review (GHISOLFI et al., 2022a) is the lack of 

transparency regarding the temporal dimension of the SD empirical models. The 

assumptions about the delays of each action to reach the results are not clear. This is an 

issue since time is crucial to evaluate the potential and success of policies for achieving 

decarbonization targets within defined timeframes. As an exception, NASSAR (2021) 

analyzed the empirical time factors related to the choice and change of transport mode in 

a Brazilian case study. By interviewing different experts, who revealed their perspectives 

regarding the dynamics involved in the process of infrastructure construction and 

transport mode choice, the author drew up three scenarios in which the time range from 

13 to 22 years for companies to shift transport modes. 

From the exposed background, this chapter proposes a quantitative SD model to analyze 

the impact of decarbonization policies made at different points in time over the reduction 

of freight transport emissions. SD was the chosen method since we aim to analyze policy 

decisions in a large-scale system that takes into account the dynamics of the system’s 

multiple feedback loops. The proposed model helps to start filling the gaps found in the 

literature review carried out by GHISOLFI et al., (2022a) and presented in Chapter 2, 

regarding a model with multiple policy measures in a system-wide perspective and 

deepening the knowledge about the temporal factor that governs the dynamics of the 

system’s responses. 
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4.3 Material and Methods 

This section brings a geographical background to contextualize the case study regarding 

the Brazilian freight transport system to which the model is applied; a qualitative research 

with some stakeholders to investigate the main barriers, challenges, and opportunities for 

alternative fuel vehicles adoption in the Brazilian automotive market. Such qualitative 

research aimed to inspect the temporal factor related to policies promoting alternative fuel 

vehicles, an important input for the proposed SD model; the development of the 

mathematical SD model itself, data used, and the performed model tests and sensitivity 

analysis. 

4.3.1 Geographical background 

The Brazilian freight transport system has been chosen as the case study to test the 

applicability of this research’s modeling approach. With an area of 8.5 million square 

kilometers, Brazil has the challenge of creating and maintaining an immense transport 

network to transport its products and allow the mobility of the population, which becomes 

complex in an ecosystem formed by different biomes, in which the need for 

environmental protection contrasts with economic development and the advancement of 

infrastructure. The Brazilian freight transport matrix is heavily based on roadways, 

compared to other big regions as shown in Figure 4.1. 

 
Figure 4.1 – Freight transport matrix in different countries. 

Source: ENERGY RESEARCH COMPANY – EPE (2022); ITF (2022). 
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Table 4.1 – Commercial vehicle sales in 2021. 
Global rank Countries Commercial vehicle sales* 

1 USA 12,058,515 

2 China 4,793,283 

3 Canada 1,384,245 

4 Japan  772,642 

5 India 677,119 

6 Brazil  561,384 

7 Mexico  526,593 

8 France  483,279 

9 Thailand 436,380 

10 UK 396,910 

*Commercial vehicles include light commercial vehicles, heavy trucks, coaches, and buses. 
Source: THE GLOBAL ECONOMY (2022). 

From Figure 4.1, we can see a great opportunity for Brazil to decarbonize its freight 

transport by balancing the transport matrix, which can be done with investments in less 

emission-intensive transport, such as railways and waterways. The fact that Brazil relies 

on roadways to transport freight also explains the fact that it is the 6th country in the global 

rank of commercial vehicle sales in 2021, as shown in Table 4.1.  

In terms of energy consumption, the transport sector remains highly dependent on non-

renewable sources. According to the National Energy Balance – BEN (MINISTRY OF 

MINES AND ENERGY – MME and EPE, 2022), it was responsible for 32.5% of national 

energy consumption in 2021 and only road transport accounted for 30.6%. Figure 4.2 

shows the high share of fossil fuels in energy consumption from the transport sector. 

 
Figure 4.2 – Structure of energy consumption in the Brazilian transport sector. 

Source: MME and EPE (2022). 

Given the significant fossil fuel consumption in the transportation sector, it is evident the 

importance of the implementation of emission mitigation policies. In this sense, Brazil 

established several policies to encourage the production and use of biofuels, such as the 

National Program for the Production and Use of Biodiesel (PNPB), the National Alcohol 

Program (PROALCOOL) in the 1970s, and, more recently, RenovaBio, which came into 

https://www.theglobaleconomy.com/China/commercial_vehicle_sales/
https://www.theglobaleconomy.com/Canada/commercial_vehicle_sales/
https://www.theglobaleconomy.com/Japan/commercial_vehicle_sales/
https://www.theglobaleconomy.com/India/commercial_vehicle_sales/
https://www.theglobaleconomy.com/Brazil/commercial_vehicle_sales/
https://www.theglobaleconomy.com/Mexico/commercial_vehicle_sales/
https://www.theglobaleconomy.com/France/commercial_vehicle_sales/
https://www.theglobaleconomy.com/Thailand/commercial_vehicle_sales/
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force at the beginning of 2020, aiming to contribute to the regularity of supply, as well as 

to the competitive participation of different biofuels in the national market. In this way, 

the country has placed itself among the largest producers and consumers of biofuels in 

the world. It is noteworthy that these policies were driven by energy security issues, 

mainly, and environmental issues related to global warming. Also noteworthy is the Rota 

2030 Program – Mobility and Logistics, launched in 2018, which establishes a series of 

energy efficiency, safety, and sustainability obligations for the automotive sector, with 

tax benefits as a counterpart for those who adhere to the program (MME and EPE, 2020). 

4.3.2 Qualitative research 

Qualitative research is a critical component of the overall research effort. Gathering 

qualitative insights from the system’s stakeholders about their related decisions provides 

a solid conceptual foundation for our quantitative modeling. 

Regarding the adoption of alternative fuel vehicles, studies on the automotive market 

imply four general stakeholders: freight forwarders, commercial vehicle manufacturers, 

energy supply systems, and the government. Freight forwarders are the customers using 

commercial vehicles for freight transportation, ranging from owner drivers to big 

companies that can be innovative (early adopters) or conservative (late adopters). 

Commercial vehicle manufacturers develop and offer commercial vehicles on the market 

and decide whether or not to invest in the development and improvement of new 

powertrain concepts based on expected customer demand, governmental policies, and 

market trends. Refueling and recharging infrastructures incorporate managers of public 

filling stations who decide upon their expected profitability whether they invest in 

alternative filling stations or not. The government sets market regulations, fuel and 

vehicle standards, taxes, and incentives (SEITZ, 2014; SEITZ and TERZIDIS, 2014). 

Despite all the stakeholders playing an important role in the dynamics of alternative fuel 

vehicle adoption, in this research, we interviewed freight forwarders from the road 

transport sector to better understand the dynamics of their alternative fuel vehicle choices. 

The participants were chosen since their companies are already planning, testing, or 

including alternative technologies in their truck fleets. Moreover, we also interviewed a 

project manager in the technological innovation of Programa Rota 2030 (FUNDEP, 

2023). The semi-structured interview allowed the interviewees to complement their 

perspectives and experiences, also encouraging them to raise issues that were not included 
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initially in the interview schedule (FIGGOU and PAVLOPOULOS, 2015). The 

interviews were carried out in May and June 2022 through virtual meetings with each 

interviewee individually with an average duration of one hour. 

When working with System Dynamics modeling, it is important to account for the 

system’s delays and the impact they have on how the system evolves. The interviews 

focused on identifying and understanding the main time lags in the buying decision 

process of alternative fuel vehicles. The analysis revealed the need to better understand 

the user’s perspective, comprehend what they consider necessary when choosing new 

vehicles, how they include technology innovation and sustainability into their strategic 

planning, and how willing they are to shift from one technology to another.  

The interviews investigated which factors contribute to the decision-making process and 

raised some insights into the timing for alternative fuel vehicle adoption by early adopter 

companies. The experts interviewed can be seen in Table 4.2. To ensure that interviewees 

provided frank opinions, we have committed to keeping their identities and affiliations 

confidential. 

Table 4.2 – Interviewees overall. 
Identification Headquarters location 

Carrier 1 Apucarana/PR 

Carrier 2 Guarulhos/SP 

Carrier 3 Itajaí/SC 

Carrier 4 Guarulhos/SP; Itajaí/SC; Rio de Janeiro/RJ; Cariacica/ES 

Carrier 5 Contagem/MG; Parauapebas/PA; São Paulo/SP 

Carrier 6 Dois Córregos/SP 

Rota 2030 – 

Project Manager (FUNDEP) 
-  

 

The companies interviewed have fleets that range from 10 to 200 vehicles with an average 

age between three and nine years. The frequency of reviewing strategic decisions on fleet 

management occurs every six months in all the companies interviewed. The criteria for 

the replacement and acquisition of new vehicles by carriers can be seen in Table 4.3. 

Table 4.3 – Factors that influence scrapping and the purchase of new vehicles. 

Factors 
Carriers 

1 2 3 4 5 6 

Vehicle replacement 

Mileage  x x   x x 

Age x  x x x  

Maintenance cost     x x 

Purchase of new vehicles 

Purchase cost x x x  x  

Maintenance cost x  x x x x 

Energy efficiency  x x x x x 

Refueling facilities    x   

Brand x      

Embedded technology      x 



 

80 
 

The main factors that influence the vehicle’s scrapping are the mileage traveled and its 

age. Secondly to the first two, the cost of vehicle maintenance is also a concern for 

managers and it is considered important in the decision to change the truck. The factors 

that influence the choice and acquisition of new vehicles are mainly purchase cost, 

maintenance cost, and efficiency. However, the refueling/recharging facilities, brand, and 

embedded technology were also indicated. 

As already mentioned, the companies interviewed are in the process of planning for 

acquisition or have already acquired alternative technologies to the internal combustion 

engine, these being the truck powered by compressed natural gas (CNG) or biomethane 

and the electric vehicle for urban delivery. Table 4.4 shows technologies and acquisition 

times (real or estimated from the beginning of the planning process to the actual purchase 

of the vehicle) by each company. 

Table 4.4 – Times of acquisition/adaptation of each alternative fuel vehicle. 
  Carrier 1 Carrier 2 Carrier 3 Carrier 4 Carrier 5 Carrier 6 

Alternative energy source 

CNG/ 

biomethane 
x*   x  x 

Electricity  x* x*  x x 

Acquisition time (months)  24 12 24 24 1 8 

*In process of planning for acquisition. In these cases, the time is estimated. 

Carrier 1 has been studying and negotiating for about one year to obtain a CNG-powered 

truck to meet demand on a specific route, in which it is possible to supply it at two 

different stations. The company estimates that it will take two years to put the vehicle into 

operation. As difficulties, it was highlighted the high cost of acquisition, in addition to 

the challenge of supply with few stations and a long supply time. 

Carrier 2 plans to purchase at least one electric van within one year. Studies are being 

carried out on economic feasibility, driver training, and the identification of recharging 

points on the routes. In addition, investment in a charging point within the company itself 

or allocation of the electric van on a special route where there are sufficient charging 

points for the autonomy of the van is considered. Among the difficulties are the high cost 

of acquisition, scarce charging stations, and the cost of maintenance. 

Carrier 3 plans to acquire an electric van for short-distance trips, by installing its own 

charging point, integrated with the photovoltaic energy generation project. The steps 

include economic feasibility studies, installation of a photovoltaic energy generating 

matrix, internal negotiations, and with the car dealership, and driver training. The total 

estimated time to acquire the vehicle is two years, with the high purchasing cost being the 
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main barrier. For long distances trips, autonomy is not enough and there are still no public 

charging stations available. 

Carrier 4 has vehicles powered by CNG, with which the freight price is more expensive 

due to the associated costs. The acquisition process began through internal discussions, 

meetings with the automaker, and capturing demand from shippers. The project was made 

possible by the closing of longer-than-usual contracts. In addition, economic feasibility 

studies and route mapping were carried out to identify the refueling stations capable of 

meeting the demand. It is estimated that it took about two years from the initiative to the 

first operation of the vehicle. The company highlights the high cost of investment, the 

lack of tax incentives, and the bureaucracy for financing, in addition to the lack of 

adequate infrastructure and the long downtime for refueling. 

Carrier 5 has two electric vehicles in its fleet. The company already had its generation of 

photovoltaic energy to supply its administrative facilities; therefore, the acquisition of 

vehicles was made possible by the installation of its own charging point, which took 

around one month. Some barriers to the acquisition included the lack of public recharging 

stations, limited battery life, little variety of brands and models, high acquisition cost, 

recharging time, and compromised vehicle autonomy due to the quality of the pavement. 

Carrier 6 has vehicles powered by CNG and biomethane, in addition to electric vehicles. 

The latter was made possible by the installation of charging stations within the company. 

As main barriers, the company cites the restricted maintenance, and refueling stations 

without structure to receive large vehicles (CNG trucks), in addition to the lack of tax 

incentives. The company claims that there is a strong restriction for the full replacement 

of the fleet since electric vehicles are restricted to urban or short-distance trips, while 

CNG/biomethane-powered vehicles still do not have enough refueling infrastructure on 

long-distance routes. 

Finally, a project coordinator linked to the Rota 2030 Program was also interviewed 

regarding the dynamics of the technological innovation process in the Brazilian market. 

The main reason for the nationalization of technological production is cost reduction, 

which could accelerate the decarbonization of the automotive sector. However, the 

country is still in the phase of acquiring knowledge and absorbing new technologies, with 

the degree of technological maturity being the main discrepancy between the Brazilian 

and international contexts. The market position of foreign companies is guaranteed by the 
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high technological level, in addition to the continuous investment in development and 

innovation, which does not occur in the domestic market. The main difficulties related to 

technological innovation at the national level involve excessive bureaucracy and scarce 

resources. In general, the average product development time is two years. The time varies 

from four to six years adding the stages of testing, approvals, product engineering, and 

market launch. 

The presented interviews have been important to deepen knowledge about the barriers, 

challenges, and difficulties faced by the road freight sector in the adoption of alternative 

fuel vehicles in Brazil. Regardless of the size of the companies interviewed and the 

territorial scope in which they operate, two main problems were highlighted by all of 

them: the high purchase cost and the difficulty in recharging/supplying. Some companies 

install their own clean energy generation networks, given the economic unfeasibility of 

using the conventional electrical grid, in addition to the scarce or complete absence of 

public charging points. For long-distance transport, the use of CNG or biomethane is also 

restricted by the availability of recharging stations along the routes due to the logistical 

difficulties of transporting these gases. 

Therefore, the acquisition time of alternative technologies by the companies interviewed 

must be analyzed considering that they are early adopters and that they act without the 

collaboration of other sectors, although the last is considered imperative for the 

introduction of new technologies on a large scale in the market, such as the energy, 

regulatory, and infrastructure sectors. We believe that, as these sectors become involved 

in the process and facilitate the access by transport companies, the technologies’ 

acquisition times will be reduced. However, uncertainty remains about the time frame for 

the involvement of other sectors. 

Thus, the time factor of the policy for promoting alternative fuel vehicles, in the model 

presented in the next section, is based on projections from a study carried out by the 

Boston Consulting Group - BCG together with the Brazilian National Association of 

Automotive Vehicle Manufacturers – ANFAVEA (BCG and ANFAVEA, 2021), which 

considers several forces influencing the evolution of the adoption of vehicle technologies, 

such as government regulation and incentives, pressure from investors and customers for 

environmental, social and governance (ESG) principles, technological feasibility and 

development of industry, availability of energy production and distribution infrastructure, 

and the vehicle's total cost of ownership. 
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4.3.3 Quantitative SD modeling and data used 

The approach used to model the dynamics of freight transport decarbonization policies is 

based on an SD conceptual model represented by causal loop diagrams (GHISOLFI et 

al., 2022b; see also Chapter 3). This conceptual model is composed of five submodels, 

each one representing the dynamics of a specific decarbonization strategy: reducing 

freight transport demand, shifting freight to low carbon-intensity modes, improving 

vehicle utilization, increasing energy efficiency, and promoting new energy sources. The 

submodels are interrelated through feedback loops. We highlight that, despite being based 

on the causal loop diagrams presented by GHISOLFI et al. (2022b), the present simulation 

model has some assumptions and simplifications: the freight transport demand is an input 

variable, based on historical series, instead of being internally modeled; vehicle 

utilization, used to estimate the ideal fleet size, is based on an input variable that accounts 

for the transport activity carried out by vehicles; the energy efficiency, used to estimate 

the different energy consumptions, is also based on input data. On the other hand, the 

strategies of shifting freight to low carbon-intensity modes, and promoting new energy 

sources, are modeled as dynamic levers from a policy perspective. As part of the strategy 

of promoting new energy sources, the fleet renewal process is dynamically modeled by 

the SD aging chain structure (STERMAN, 2000). The choice of the simulated strategy 

regarding new energy sources is justified by the fact that it is the only policy measure that 

can really decarbonize the freight system, as far as the energy sources are clean, while the 

other four strategies can only mitigate the freight transport emissions. The other 

considered decarbonization policy is related to the choice of more efficient modes of 

transport, as it has a huge potential for improvements in our case study context.  

Thus, the simulation model is organized into three submodels, as presented in the next 

subsections, each one presenting the stock and flow diagrams and their main equations. 

The model was developed in Vensim® Pro (VENTANA SYSTEMS, 2022), and the 

simulation timeframe range from 2020 to 2050. All detailed equations can be found in 

Appendix A.  

4.3.3.1 Ideal fleet size 

The first submodel aims to simulate the ideal fleet size based on the activity assigned to 

each transport mode. Figure 4.3 shows the stock and flow diagram of this submodel. 
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Figure 4.3 – Ideal fleet size submodel. 

The simulation starts with the stock and flow variables regarding the yearly freight 

transport activity, measured in tonne-kilometers (tkm)1, which depends on the freight 

transport activity of the initial year of the simulation, in addition to an average percentage 

of the future variation, based on historical series, as shown in Figure 4.4. 

 
Figure 4.4 – Historical series and projection of freight transport activity. 

Source: Brazilian Energy Research Company (EPE, 2022). 

The next step is the mode split, simulating the percentage of freight that will be carried 

by roadways, railways, or waterways. This is based on Brazilian’s National Logistics Plan 

– NLP 2035 (MINISTRY OF INFRASTRUCTURE and BRAZILIAN ENTERPRISE 

FOR PLANNING AND LOGISTICS – EPL, 2021) which, by predicting a set of 

 
 

1 Tonne-kilometers (tkm) – unit of measurement of goods transport which represents the transport of one 

tonne of goods over a distance of one kilometer. 
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investments in national logistics infrastructure over the next years, simulates scenarios 

with different levels of achievement of the proposed goals, and consequently the use of 

the modal matrix. The NLP 2035 is then an infrastructure investment plan, which is 

modeled here by the ramp function. This function smoothly changes the variable value as 

a curve and its use is common in situations where it is necessary to simulate a linearly 

increasing or decreasing flow that is not constant over time (ABIDIN et al., 2014). The 

ramp function assigns zero to the variable until the beginning of its behavior change. After 

this period, the curve changes the variable value until it reaches a predicted value and 

then remains constant. Thus, this function allows the simulation of the adaptation period 

of new policies (COYLE, 1996). During the simulation period, the level of NLP 2035 

implementation starts in 2020 and will increase linearly to reach 100% by 2035. 

Therefore, the NLP is defined in Equation (4.1) 

𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑠 = 𝑅𝐴𝑀𝑃(0.0666667, 2020, 2035) (4.1) 

Based on the initial percentage and the NLP 2035 projections for the modal share, an S-

shaped curve represents the relationship between the modal share and the level of NLP 

implementation. The initial percentage of use of each mode is 63.3%, 21.7%, and 14.9% 

for road, rail, and waterways, respectively. In the case of complete fulfillment of the NLP, 

Table 4.5 presents the projections for each scenario considering the freight modal share. 

As highlighted before, each scenario of NLP 2035 represents a set of logistics 

infrastructure investments, i.e., on strategic railway corridors, waterways, ports, 

multimodal integration, etc., which have the potential to change the modal share of the 

freight transport system if implemented.  

Table 4.5 – Initial modal share and projections for 2035. 

Modes 2020 
Modal share – Scenarios 2035 

1 2 3 

Roadway 63.3 55 40 32 

Railway 21.7 31 43 47 

Waterway 14.9 13 16 19 

Source: EPE (2022); MINISTRY OF INFRASTRUCTURE and EPL (2021). 

The dependency between the NLP implementation and the modal share is modeled 

through an S-shaped curve with the general form of Equation (4.2). 

𝑚𝑜𝑑𝑎𝑙 𝑠ℎ𝑎𝑟𝑒 = 𝑎 𝑥 tanh(𝑏 𝑥 𝑁𝐿𝑃 + 𝑐) + 𝑑 (4.2) 

where 𝑎, 𝑏, 𝑐, 𝑑 are scale parameters and NLP represents the policies toward alternative 

modes, which is a percentage of its implementation (0% refers to no implementation and 
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100% refers to the full implementation). The attainment of these values would occur 

according to an initially slow behavior. Once the initial competencies of policy have been 

exceeded, the growth becomes exponential until a reversal in the implementation rate 

stabilizes at the end of the NLP implementation. As an example, the rail share in Scenario 

3 of NLP 2035 is defined by Equation (4.3) and illustrated in Figure 4.5. The other 

equations for modal share as a function of policies toward alternative modes are provided 

in Appendix B. 

𝑅𝑎𝑖𝑙 𝑠ℎ𝑎𝑟𝑒 = 0.05 𝑥 tanh(15 𝑥 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑠 − 7.5) + 0.26 (4.3) 

 
Figure 4.5 – Relationship between rail share and policies toward alternative modes.  

The choice of the sigmoid function to represent the mode share is due to the behavior of 

policy implementation whose growth is exponential at first but gradually decreases until 

the system reaches its equilibrium level, commonly observed in SD (STERMAN, 2000) 

and already applied in transportation studies (FONTOURA et al., 2019; 2020; 

GEORGIADIS and VLACHOS, 2004). 

Given the freight transport activity forecast and the percentage of freight being 

transported by each mode, we have the freight transport activity by mode. The next step 

is to simulate the ideal fleets of trucks, trains, and barges. As an example, the ideal truck 

fleet is given by Equation (4.4).  

𝑖𝑑𝑒𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑓𝑙𝑒𝑒𝑡 =  
𝑟𝑜𝑎𝑑 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑘𝑚/𝑡𝑟𝑢𝑐𝑘
 (4.4) 

The variables “actual tkm/truck”, “actual tkm/train”, and “actual tkm/barge” represent the 

efficiency index to be maintained concerning the fleet usage. Such indexes are based on 

the assumption that the vehicles will perform the same transport activity (measured in 

tkm) in the future. To calculate these input data, we have used the historical series of 
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transport activity (tkm) by mode given by EPE (2022), the historical series of the road 

fleet given by SINDIPEÇAS and ABIPEÇAS (2022), and the historical series of the rail 

and waterway fleets obtained from the CNT Transport Yearbook (CNT, 2021). The ideal 

fleets are used in the Vehicle choice submodel for the dynamics of the fleet renewal 

process. 

4.3.3.2 Vehicle choice 

The second submodel aims to simulate the market share of different options of vehicle 

technology and fuels that will integrate each transport mode fleet. Figure 4.6 shows the 

diagram of the total truck fleet composed of old and new trucks powered by 

diesel/biodiesel, electricity, hydrogen, and CNG/biomethane. We highlight that the old 

fleet is only powered by diesel/biodiesel.  

 
Figure 4.6 – Total truck fleet diagram2. 

We have segregated the old fleet from the new fleet since their stock-and-flow structures 

are different: while the new fleet has an inflow of vehicles coming from vehicles’ sales, 

the old fleet has only outflows represented by the scrappage rate. The old fleet is 

composed of stocks of vehicles already in the market in the first year of the simulation. 

In Figure 4.7, each stock represents the sum of the trucks of a certain age group (six-year 

range) that are still being used. We have chosen to group the vehicles by age every six 

years, instead of modeling each age by an individual stock, given that the Brazilian fleet 

has vehicles over 40 years old still in use. The age distribution of the active fleet of trucks, 

locomotives, and barges in the first year of the simulation is given by SINDIPEÇAS and 

ABIPEÇAS (2022), BNDES (2014) and CNT (2021), respectively.

 
 

2 The shadow variables (in gray) have been defined in other parts of the diagram and are used to let it 

visually clean, besides connecting different submodels (placed in different views). 
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Figure 4.7 – Total old truck fleet. 
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There are two policy-related variables: “speed up fleet renewal-policy control” and 

“policies towards speeding up fleet renewal”. The first one assumes zero or one, 

according to the scenario where these policies are active or not. The second one is given 

by Equation (4.5), assuming that this policy will be applied in a time range of five years. 

𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑢𝑝 𝑓𝑙𝑒𝑒𝑡 𝑟𝑒𝑛𝑒𝑤𝑎𝑙 = 𝑅𝐴𝑀𝑃 (0.2, 2020, 2025) (4.5) 

As the fleet ages, vehicles are scrapped, as indicated by the scrappage rate in Equation 

(4.6). 

𝑠𝑐𝑟𝑎𝑝𝑝𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 = 𝐼𝐹 𝑇𝐻𝐸𝑁 𝐸𝐿𝑆𝐸(𝑠𝑝𝑒𝑒𝑑 𝑢𝑝 𝑓𝑙𝑒𝑒𝑡 𝑟𝑒𝑛𝑒𝑤𝑎𝑙 − 𝑝𝑜𝑙𝑖𝑐𝑦 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =

0, 𝑡𝑟𝑢𝑐𝑘 𝑓𝑙𝑒𝑒𝑡 𝑥 𝑡𝑟𝑢𝑐𝑘𝑠 𝑠𝑐𝑟𝑎𝑝𝑝𝑎𝑔𝑒 𝑟𝑎𝑡𝑒, (1 +

𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑔 𝑢𝑝 𝑓𝑙𝑒𝑒𝑡 𝑟𝑒𝑛𝑒𝑤𝑎𝑙)𝑥 𝑡𝑟𝑢𝑐𝑘 𝑓𝑙𝑒𝑒𝑡 𝑥 𝑡𝑟𝑢𝑐𝑘𝑠 𝑠𝑐𝑟𝑎𝑝𝑝𝑎𝑔𝑒 𝑟𝑎𝑡𝑒)  

(4.6) 

If the policy towards speeding up fleet renewal is applied, the scrappage rate will be 

accelerated by this policy, otherwise, it will occur at the normal rate, described as follows. 

The truck scrappage rate function was calibrated by the Brazilian National Traffic 

Department – DENATRAN (MINISTRY OF THE ENVIRONMENT, 2014) using 

average age and total fleet data. The resulting scrapping function is a renormalized 

logistics function defined by Equation (4.7). 

𝑆(𝑡) = 1 − [
1

1 + 𝑒𝑥𝑝 (𝑎(𝑡 − 𝑡0))
+

1

1 + 𝑒𝑥𝑝 (𝑎(𝑡 + 𝑡0))
] (4.7) 

with: 

• 𝑆(𝑡) is the portion of scrapped trucks; 

• 𝑡 is the trucks’ age in years; 

• 𝑡0 is 17.0 for trucks; and 

• 𝑎 is 0.10 for trucks. 

Given the lack of data for the locomotives scrappage function definition in Brazil, for 

locomotives scrappage, we have used the function defined by GREENE et al. (2004) 

regarding the American locomotive fleet, as shown in Equation (4.8). 

𝑆(𝑡) = 1 −
𝐸𝑋𝑃(

𝑏 − 𝑡
𝑎

) + 𝐸𝑋𝑃(
2𝑏 − 𝑡

𝑎
)

𝐸𝑋𝑃(
𝑏
𝑎

) + 𝐸𝑋𝑃(
2𝑏 − 𝑡

𝑎
)

 (4.8) 

with: 

• 𝑆(𝑡) is the portion of scrapped locomotives; 

• 𝑡 is the locomotive’s age in years; 

• 𝑎 is 7.971970; and 
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• 𝑏 is 25.45011. 

The same lack of data occurs for the Brazilian barge fleet, which leads us to use the ship 

fleet scrappage function defined by HELD et al. (2021), shown in Equation (4.9). 

𝑆(𝑡) = 1 − (1 + 𝐸𝑋𝑃(𝑎1 𝑥 𝑡 − 𝑎2))−𝑏 (4.9) 

with: 

• 𝑆(𝑡) is the portion of scrapped barges; 

• 𝑡 is the barge’s age in years; 

• 𝑎1 is 0.4105; 

• 𝑎2 is 9.2562; and 

• 𝑏 is 0.2320. 

Surviving and scrapping rate curves for trucks, locomotives, and barges are shown in 

Figure 4.8.  

 
Figure 4.8 – Trucks, trains, and barges surviving and scrapping curves. 

As the old fleet will be scrapped over time, new vehicles must enter the market. This fleet 

renewal process is modeled by the aging chain mechanism, which is used to represent 

situations where the outflows of items in a stock and flow structure are age-dependent 

and allow to model changes (through inflows and outflows) of any intermediate stock of 

the aging chain structure (STERMAN, 2000). Thus, we have assumed that the rate at 

which companies discard and replace their fleets strongly depends on the age of their 

vehicles and that the scrappage rates are based on the probabilities given by Equations 

(4.7), (4.8), and (4.9). Figure 4.9 shows the aging chain structure for the fleet renewal 

process. 
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Figure 4.9 – Aging chain structure for the fleet renewal process. 
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The truck fleet inflow (Figure 4.10) indicates the adoption of new vehicles, based on the 

total truck fleet (described in Figure 4.6 of this submodel), and the ideal truck fleet 

(described in Figure 4.3 of the Ideal fleet size submodel), as exemplified by Equation 

(4.10). 

 
Figure 4.10 – New truck sales. 

 

𝑡𝑟𝑢𝑐𝑘 𝑓𝑙𝑒𝑒𝑡 𝑖𝑛𝑓𝑙𝑜𝑤 = 𝐼𝐹 𝑇𝐻𝐸𝑁 𝐸𝐿𝑆𝐸(𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑓𝑙𝑒𝑒𝑡

< 𝑖𝑑𝑒𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑓𝑙𝑒𝑒𝑡, (𝑖𝑑𝑒𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑓𝑙𝑒𝑒𝑡 − 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑐𝑘 𝑓𝑙𝑒𝑒𝑡), 0) 
(4.10) 

The next step involves the simulation of the share of each vehicle’s propulsion 

technology. From the first year of the simulation onwards, the vehicle fleet is split 

between different powering systems, according to specific policies towards alternative 

fuels. Regarding trucks, this is based on a technical study developed by Boston Consulting 

Group – BCG and the Brazilian Association of Motor Vehicle Manufacturers – 

ANFAVEA (BCG and ANFAVEA, 2021) which predicts that the decarbonization of the 

automotive sector in Brazil will be driven by several forces, such as tighter regulations, 

pressure from investors and customers, industry and technology development, increased 

availability of infrastructure and reduced total cost of vehicle ownership. The interaction 

of these forces will shape different decarbonization routes in Brazil in the coming years. 

This study is represented in the model by the variable “policies towards trucks alternative 

fuels”, which is modeled by the ramp function to simulate the period of adaptation to the 

policies and implementation of actions. During the simulation period, the level of policy 

implementation will increase linearly to reach 100% by 2035, as defined in Equation 

(4.11). 

𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑡𝑟𝑢𝑐𝑘𝑠 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑓𝑢𝑒𝑙𝑠 = 𝑅𝐴𝑀𝑃(0.0666667, 2020, 2035) (4.11) 

The scenarios predicted by BCG and ANFAVEA (2021), regarding the projections for 

the percentage of use of each type of fuel for trucks are presented in Table 4.6. 
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Table 4.6 – Initial fuel share for trucks and projections for 2035. 

Fuels 2020 
Fuel share (%) – Scenarios 2035 

1 2 3 4 

Diesel 100 86 68 82 70 

Biodiesel - - - 18 30 

Natural gas/biomethane 0 7 10 - - 

Electricity 0 7 15 - - 

Hydrogen 0 0 7 - - 

Source: BCG and ANFAVEA (2021). 

Scenarios 1 and 2 simulate the introduction of alternative fuels (natural gas/biomethane, 

electricity, and hydrogen) at different shares. Scenarios 3 and 4 simulate the percentage 

of biodiesel in diesel blends. In the model, these scenarios are modeled by an S-shaped 

curve that represents the relationship between the fuel share and the level of policy 

implementation, as shown in Equation (4.12) for electric trucks in Scenario 1. The other 

equations for each fuel and scenario are presented in Appendix B. 

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑡𝑟𝑢𝑐𝑘 𝑠ℎ𝑎𝑟𝑒 = 0.035 𝑥  tanh (15 𝑥 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑚𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 −

7.5) + 0.035  
(4.12) 

For trains and barges, there are no studies or government plans for such policies toward 

alternative fuels. However, we considered independent initiatives announced by some 

concessionaires to simulate a scenario in which all modes are changing to a more 

sustainable outline. In this case, Table 4.7 shows the set of addressed scenarios for 2050. 

Table 4.7 – Initial fuel share for trains and barges and projections for 2050. 

Fuels 2020 
Fuel share (%) – Scenarios 2050 

1 2 

Diesel 100 50 0 

Electricity 0 50 100 

Source: VLI (2022); RUMO (2022); VALE (2022).  

The next step of this submodel is the aging chain of new vehicles sold from 2020 onwards, 

a sequence of stocks for each age range of five years (Figure 4.9). Each year, newly sold 

vehicles enter the first stock and remain there for five years, being scrapped according to 

the respective scrapping rate Equations (4.7), (4.8), and (4.9) for trucks, trains, and barges, 

respectively, considering the average age of the age group. The flow variables linking the 

stocks are defined as a fixed delay function that ensures that vehicles only go to the next 

age group’s inventory at the end of five years. As an example, the outflow of the 

diesel/biodiesel trucks aging from five to six years old is defined in Equation (4.13). 

𝐷𝐵 5 𝑡𝑜 6 = 𝐷𝐸𝐿𝐴𝑌 𝐹𝐼𝑋𝐸𝐷(𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 𝑡𝑟𝑢𝑐𝑘𝑠 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛 − scrappage DB 0-5, 5, 0) (4.13) 



 

94 
 

For the new vehicles entering the market, we have modeled an aging chain of 30 years 

for trucks, trains, and barges. Then, the structure for each type of vehicle is composed of 

six stocks, each one of them with a five years range.  

With the total fleet and the fleet technology share, the next submodel simulates energy 

consumption and emissions from the freight transport sector. 

4.3.3.3 Energy consumption and emissions 

The last submodel aims to simulate the consumption of each type of fuel/energy and 

emissions, using the results of the previous submodels, referring to the freight transport 

activity by mode and percentage of each vehicle’s technology in the fleet. We have 

assumed that the amount of transport activity performed by each vehicle technology will 

be proportional to their fleet market share. Figure 4.11 shows the diagram related to the 

energy consumption of the truck fleet. 

 
Figure 4.11 – Energy consumption submodel – trucks fleet. 

The energy consumption is given by the transport activity performed with each type of 

fuel vehicle and its efficiency, as exemplified by Equation (4.14). The energy efficiency 

data is presented in Table 4.8. 

𝑡𝑟𝑢𝑐𝑘 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

=  𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑤𝑖𝑡ℎ 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑡𝑟𝑢𝑐𝑘 𝑥 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑡𝑟𝑢𝑐𝑘 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 
(4.14) 
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Figure 4.12 shows the last part of the submodel, regarding the simulation of CO2 

emissions for each transport mode. 

 
Figure 4.12 – Emissions submodel – trucks fleet. 

The emissions inflows are given by the fuel/energy consumption and the related CO2 

emission factor, as shown in Equation (4.15) for the case of road hydrogen emissions. 

𝑟𝑜𝑎𝑑 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =

 𝑡𝑟𝑢𝑐𝑘 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑥 𝑟𝑜𝑎𝑑 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝐶𝑂2𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟  
(4.15) 

Emissions rates are accumulated in a stock variable for each transport mode. Then, the 

emissions stocks are aggregated to estimate total emissions from freight transport. The 

data regarding efficiency and emission factors for each vehicle type and propulsion 

energy are given in Table 4.8. 

To maintain a fair comparison between the different energy sources, we have considered 

only the tank-to-wheel energy use, which explains the null emissions factors for 

electricity and hydrogen. Another pertinent approach could be the life cycle analysis 

(well-to-wheel) of the energy sources considered, showing how clean alternative energies 

are for each case study.  
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Table 4.8 – Efficiency and CO2 emission factor for vehicles and propulsion energy options. 

Vehicle 
Propulsion 

energy 

Energy 

efficiency 

factor 

Source 

CO2 

emission 

factor 

Source 

Truck 

Diesel 
0.0577 

l/tkm 

MINISTRY OF MINES 

AND ENERGY – MME 

et al. (2020) 

2.697 kg/l 

GREENHOUSE 

GAS PROTOCOL 

(2021) 

Biodiesel 
0.0577 

l/tkm 
MME et al. (2020) 2.431 kg/l 

MINISTRY OF THE 

ENVIRONMENT 

(2014) 

CNG 
0.0629 

m³/tkm 
MME et al. (2020) 

2.101 

kg/m³ 
FERREIRA (2022) 

Biomethane 
0.0629 

m³/tkm 
MME et al. (2020) 

0.24 

kg/m³ 
FERREIRA (2022) 

Electricity 
1.35 

kWh/tkm 

MERCEDES-BENZ 

(2022); VOLVO (2022) 
0 - 

Hydrogen 
0.10 

kg/tkm 
HYZON (2022) 0 - 

Train 

Diesel 
0.0047 

l/tkm 

EPL and INSTITUTE 

OF ENERGY AND 

ENVIRONMENT-

IEMA (2021) 

2.697 kg/l 

GREENHOUSE 

GAS PROTOCOL 

(2021) 

Electricity 
53.1 

Wh/tkm 
ĆWIL et al. (2021) 0 - 

Barge 
Diesel 

0.0038 

l/tkm 
EPL and IEMA (2021); 2.697 kg/l 

GREENHOUSE 

GAS PROTOCOL 

(2021) 

Electricity 28 Wh/tkm BAZALUK et al. (2021) 0 - 

 

The last part of the model, shown in Figure 4.13, simulates a “control” variable by 

comparing the total freight emissions with estimated budgets for the sector. Given the 

absence of a target to reduce emissions from the Brazilian freight transport sector, the 

budgets are estimated based on the percentage of Brazilian freight emissions and the CO2 

emission budgets for limiting global warming to 1,5°C or 2°C by 2050. The percentage 

of Brazilian freight emissions is calculated based on the data of emissions from the sector 

in 2020 out of the global CO2 emissions in the same year. Equation (4.16) presents the 

definition of the proposed CO2 emissions budget for the Brazilian freight transport sector 

for limiting global warming to 1.5°C. The freight emissions budget for limiting global 

warming to 2ºC is similar. These proposed budgets allocate to the Brazilian freight 

transport sector a percentage of the global emissions budget equivalent to its percentage 

of emissions in 2020 as the emissions right in the following years. 

% 𝑏𝑢𝑑𝑔𝑒𝑡 1.5° 𝐶 𝐵𝑟𝑎𝑧𝑖𝑙𝑖𝑎𝑛 𝑓𝑟𝑒𝑖𝑔ℎ𝑡

= 𝑔𝑙𝑜𝑏𝑎𝑙 𝐶𝑂2 𝑏𝑢𝑑𝑔𝑒𝑡 1.5°𝐶" ∗ "% 𝐵𝑟𝑎𝑧𝑖𝑙𝑖𝑎𝑛 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠" 
(4.16) 

These estimated budgets are debatable and will be better argued in the Discussions section 

(Section 4.5). The input data is shown in Table 4.9. 
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Table 4.9 – Data related to transport emissions control. 
Variable Data input Source 

Global CO2 emissions 2020 34,81 x 109 ton STATISTA (2022) 

Brazilian freight transport emissions 2020 79,7 x 106 ton EPE (2022); EPL and IEMA (2021) 

CO2 budget 1,5°C 
400 x 109 ton 

INTERGOVERNMENTAL PANEL  

ON CLIMATE CHANGE (IPCC, 2021) 

CO2 budget 2°C 1150 x 109 ton IPCC (2021) 

 

 
Figure 4.13 – Freight transport emissions control. 

 

4.3.4 Model testing and sensitivity analysis 

Confidence in system dynamics models can be increased by a wide variety of tests of 

model structure, model behavior, and model policy implications (FORRESTER and 

SENGE, 1980). Model testing focuses on the process of building confidence that a model 

is appropriate for its purpose. ZAGONEL and CORBERT (2006) pointed out the most 

appropriate tests for SD quantitative models: boundary adequacy tests, structure 

assessment tests (physical conservation), dimensional consistency, integration error, 

extreme conditions tests, and behavior reproduction tests. All these tests were performed 

according to STERMAN (2000). After necessary adjustments, the model performed as 

expected in the testing phase and was considered appropriate for simulation. 

4.3.4.1 Boundary adequacy test 

Boundary adequacy tests assess the appropriateness of the model boundary for the 

purpose at hand. Interviews with experts and a literature review may suggest some 

processes that perhaps should be made endogenous (STERMAN, 2000). 

The boundaries of the model could be expanded drastically, with the inclusion of many 

variables found, both in the literature review and in interviews with experts. Despite being 

based on the causal loop diagram by GHISOLFI et al. (2022b), who presented a 

total freight
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CO2 budget 1.5ºC
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qualitative model with five decarbonization strategies and their basic variables, we chose 

to focus on the dynamics of fleet renewal and how it impacts emissions from freight 

transport. This factor could also have been modeled differently, in which fleet renewal 

policies would be analyzed based on utility functions, which would expand the model 

with details of the multiple factors considered by users when choosing one technological 

alternative over another. However, it was decided to add such factors to the policy-related 

variables (policies towards vehicles alternative fuels, policies towards speeding up fleet 

renewal, and policies towards alternative modes), which objective is not to show how 

(cost reduction, provision of infrastructure, increased efficiency, etc.), but rather when 

targets will be achieved in different scenarios. Then, the boundary of the proposed model 

is considered adequate for its purpose.    

4.3.4.2 Structure assessment test (physical conservation) 

Structure assessment focuses on the conformance of the model to basic physical realities 

such as conservation laws. A common violation of physical law involves stocks that 

cannot become negative in real quantities such as population inventories. Therefore, the 

outflows from all such stocks must approach zero as the stock approaches zero. This 

means there must be a first-order negative feedback loop that restricts all the outflows 

from real stocks so that the flow is zero when the stock is zero. Structure assessment tests 

are carried out using stock and flow diagrams, besides direct inspection of the equations 

(STERMAN, 2000). In the process of formulating the model, the physical conservation 

test was performed. Figure 4.14 shows the example of the stock of the total old truck fleet, 

which does not become negative, despite the absence of inflows of new vehicles into old 

fleet stocks. 

 
Figure 4.14 – Structure assessment test – example of the stock of the total old truck fleet. 
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4.3.4.3 Dimensional consistency test 

The dimensional consistency test refers to the direct and systematic verification of all 

equations and variables to check their real meaning and unit adequacy (STERMAN, 

2000). This test was performed using the units check tool available on Vensim® Pro. The 

inconsistencies were solved during the model formulation. 

4.3.4.4 Integration error test 

For the proposed model, we used the Euler integration technique, which assumption is 

that the rates (flow variables) remain constant between two time periods (time step 𝑑𝑡). 

The assumption that the rates remain constant throughout the time interval 𝑑𝑡 is 

reasonable if the dynamics of the system are slow enough and 𝑑𝑡 is small enough. The 

definitions of “reasonable” and “small enough” depend on the accuracy required, which 

in turn depends on the purpose of the model3.  

Given the purpose of the model to simulate the impacts of policies over decarbonization 

of the freight system, which can take years, the assumption of the Euler integration 

technique was considered appropriate. The choice of the time step 𝑑𝑡 was made by 

systematically cutting the value in half and checking the significance of the change over 

the results. Table 4.10 shows the output values of the total CO2 emissions from freight 

transport for the year 2050. 

Table 4.10 – Freight CO2 emissions in 2050 for different time steps. 
Year Time Step (year) Emission CO2 (tonCO2) Variation (%) 

2050 

1 9.71 x109 - 

0.5 9.86 x109 1.55 

0.25 9.94 x109 0.78 

0.125 9.97 x109 0.39 

 0.625 9.99 x109 0.20 

 

Then, the chosen time step was 0.125, since the variation of its result is under 0.5%, taken 

as a reasonable accuracy.  

4.3.4.5 Extreme conditions test 

Models must be robust under extreme conditions, which means that their behavior must 

be realistic under any imposed conditions. The extreme conditions test verifies if the 

model presents an appropriate behavior when the parameters are subjected to extreme 

 
 

3 For more information about numerical integration techniques, see Appendix A of STERMAN (2000, p. 

903). 
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values, such as zero or infinity, and can be performed considering two ways: by direct 

inspection of the model equations or by simulation (STERMAN, 2000). The variables 

submitted to extreme values for this test, as well as the expected behavior for verification, 

are shown in Table 4.11. 

Table 4.11 – Tested variables in extreme conditions test. 
Submodel Variable Value  Expected behavior 

Ideal fleet size 

Yearly freight  

transport activity 
0 tkm 

Ideal Vehicle fleet, Vehicle fleet inflow, 

Vehicle energy consumption, and Emissions 

will be null  

Yearly freight 

transport activity 

change 

100% 

Variable “control” will reach 1 much earlier, 

meaning that emissions would exceed its 

budget too fast 

Energy 

consumption and 

emissions 

Energy vehicle  

Efficiency 
1 l/tkm 

Energy consumption and emissions will be 

much higher   

Emissions factor 
1,000 

kgCO2/l 

Emissions will be much higher and Variable 

“control” will reach 1 much earlier, meaning 

that emissions would exceed the budget too fast  

 

All expected behaviors under the extreme conditions established were respected, which 

corroborates the structure reliability of the proposed model. 

4.3.4.6 Behavior reproduction test 

The behavior reproduction test assesses the model’s ability to reproduce the behavior of 

a system by using, for example, descriptive statistics to assess the point-by-point fit. The 

behavior reproduction test aims to uncover flaws in the structure or parameters of the 

model and assess whether they matter relative to the purpose. In addition to showing how 

well the model fits, this test also points out all the places it does not. All discrepancies 

should be discussed so that a consensus can be reached on whether they are significant 

enough to lead to model revisions (STERMAN, 2000).   

This test was carried out based on the business-as-usual (BAU) scenario, which purpose 

is to show the dynamics of the current system. We have tested the variables yearly freight 

transport activity, total freight emissions (sum of road, rail, and waterway emissions), 

total truck fleet, and truck fleet sales, for which we have historical data series to compare 

the results with, as shown in Figure 4.15. 

For a more complete analysis, we used validation metrics of regression models, which 

help in the analysis of the prediction model in comparison to the database used. Such 

metrics are based on the calculation of the difference between the real data and the value 

obtained by the model based on the baseline scenario. The metrics used were the 
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coefficient of determination (R²), Mean Absolute Percentage Error (MAPE), Mean 

Absolute Deviation (MAD), and Root Mean Squared Error (RMSE). 

  

 
Figure 4.15 – Comparison between real data and simulated results for transport activity, total 

freight CO2 emissions, total truck fleet, and truck sales. 

 

The R² metric represents the percentage of data variance that is explained by the model. 

In this sense, the closer the value of R² is to 100%, the more explanatory the model is 

about the data obtained in the simulation. MAPE is a metric that demonstrates the 

percentage of error concerning actual values. Thus, the higher this percentage, the greater 

the average difference between the real values and those simulated by the model. The 

MAD represents the average of the distances between each simulated value and the mean 

value of the real data, indicating the variability of the simulated values. The RMSE 

demonstrates the difference between the simulated and the real value, however, 

penalizing the outliers, i.e., those simulated values that are farther from the real ones 

(CEYLAN, 2020). Table 4.12 shows the R², the MAPE, the MAD, and the RMSE 

between simulated results and real data. 

Table 4.12 – Measures of fit between data series and simulated results. 

Variables 
Coefficient of 

determination (R²) 

 
MAPE MAD RMSE 

Freight transport activity 90%  3% 142.8 (109 tkm) 63.8 (109 tkm) 

Total freight emissions  75%  5% 6.7 (106 ton) 4.6 (106 ton) 

Total truck fleet 95%  8% 230,148 un 157,269 un 

Truck sales 30%  93% 75,934 un 79,387 un 
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As can be observed in Table 4.12, the results for freight transport activity, total freight 

emissions, and total truck fleet presented small error percentages, with a good percentage 

of R², which is considered acceptable for the model. The results of the variable truck 

sales, however, have not presented a good fit to the real data, which led us to the step of 

adjusting the model’s input parameters, seeking to optimize the simulation results, using 

the optimization tool of the Vensim® Pro software. Table 4.13 shows the initial values 

used for each input parameter and the values after model optimization. 

The only parameter modified by the optimization was the “yearly freight transport activity 

change” from 3.43% to -0.32%. Although this value improved the fit of new truck sales, 

other results such as total truck fleet and emissions got worse. Then, the initial value of 

the mentioned parameter was kept for the simulation.  

Table 4.13 – Initial and optimized input parameters. 
Parameters Initial values Optimized values 

  yearly freight transport activity change   0.0343   -0.0032 

  tkm/truck    504249   504249 

  tkm/train    1.03586e+08   1.03586e+08 

  tkm/barge   1.13787e+08   1.13787e+08 

  diesel+biodiesel truck efficiency   0.058   0.058 

  CNG truck efficiency   0.0629   0.0629 

  electric truck efficiency   1.4   1.4 

  hydrogen truck efficiency   0.11   0.11 

  diesel train efficiency   0.0046625   0.0046625 

  electric train efficiency   53.1   53.1 

  diesel barge efficiency   0.0038   0.0038 

  electric barge efficiency   28   28 

  road diesel KgCO2/L   2.4273   2.4273 

  road biodiesel KgCO2/L   2.1879   2.1879 

  road CNG CO2 emission factor   2.101   2.101 

  road biomethane CO2 emission factor   0.24   0.24 

  rail diesel KgCO2/L   2.4273   2.4273 

  waterway diesel KgCO2/L   2.4273   2.4273 

 

Regarding the behavior of the new truck sales curve, by inspecting the graph in Figure 

4.15, we can see an abrupt drop in truck sales in 2015 and 2016, which can be explained 

by the economic crisis experienced in Brazil in that period with negative GDP growth, 

also affecting the automotive sector. It means that external factors that impact this 

variable are not being considered within the model boundaries, yielding a large error 

between actual and simulated truck sales. After this period, the simulated curve tends to 

follow the same behavior as the real truck sales curve. Despite the economic scenario 

impacting vehicle sales, we decided not to include this factor in the model. We, however, 

point out that the sale of new vehicles is susceptible to the economic situation of the 

region or country under study.  
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4.3.4.7 Sensitivity analysis 

Sensitivity analyzes were performed to demonstrate the levels of confidence concerning 

the model’s representation of reality based on the variation of parameters with a certain 

degree of uncertainty. Thus, one can identify the impact of changing these parameters on 

the main outputs of the model over time. 

According to STERMAN (2000), there are three types of sensitivity: numerical, behavior 

mode, and policy sensitivity. Numerical sensitivity exists when a change in parameters 

changes the numerical values of the results. Behavior mode sensitivity exists when a 

change in parameters changes the patterns of behavior generated by the model (i.e., from 

smooth adjustment to oscillation or from s-shaped growth to overshoot and collapse). 

Policy sensitivity exists when a change in assumptions reverses the impacts or desirability 

of a proposed policy.  

Numerical sensitivity is important and the uncertainty in parameter values must be tested. 

However, for most SD models’ purposes, behavior mode sensitivity, and especially policy 

sensitivity, are more important given that such models are behavior pattern oriented 

(STERMAN, 2000; HEKIMOĞLU and BARLAS, 2016). We have performed all three 

types of sensitivity analysis. The input parameters and their range of uncertainty are 

shown in Table 4.14. 

Table 4.14 – Parameters used on the sensitivity analysis test. 
Parameters Average Min Max 

yearly freight transport activity change % 0.0343 -0.0032 0.0760 

tkm/truck 526,848 504,249 556,414 

tkm/train 103,585,569 86,330,935 131,011,518 

tkm/barge 113,786,560 91,725,945 159,798,150 

diesel/biodiesel truck efficiency (l/tkm) 0.0577 0.0272 0.1139 

CNG/biomethane truck efficiency (m³/tkm) 0.0629 0.0297 0.1242 

electric truck efficiency (kWh/tkm) 1.4000 1.1200 1.8700 

hydrogen truck efficiency (kgH2/tkm) 0.1100 0.0800 0.1600 

diesel train efficiency (l/tkm) 0.0047 0.0029 0.0065 

electric train efficiency (Wh/tkm) 53.1000 43.9000 60.0000 

diesel barge efficiency (l/tkm) 0.0020 0.0009 0.0038 

electric barge efficiency (Wh/tkm) 28.0000 25.2000 30.8000 

road diesel emission factor (kgCO2/l) 2.6970 2.4273 2.9667 

road biodiesel emission factor (kgCO2/l) 2.4310 2.1879 2.6741 

road CNG emission factor (kg CO2/m³) 2.1010 1.8909 2.3111 

road biomethane emission factor (kg CO2/m³) 0.2400 0.216 0.2640 

rail diesel emission factor (kgCO2/l) 2.6970 2.4273 2.9667 

waterway diesel emission factor (kgCO2/l) 2.6970 2.4273 2.9667 

 

The variation of yearly freight transport activity change considered the minimum and 

maximum values from 2010 to 2020 (EPE, 2022). The amount of transport service, 

measured in tkm, performed by truck, train, and barge considered the minimum and 



 

104 
 

maximum values from the historical series of transport activity by mode (EPE, 2022) and 

the respective truck fleets (SINDIPEÇAS and ABIPEÇAS, 2022) and train and barge 

fleets (CNT, 2021). The variation of all energy efficiency factors was taken from different 

sources (MME et al., 2020; EPL and IEMA, 2021; BAZALUK et al., 2021; ĆWIL et al., 

2021; FERREIRA, 2022; HYZON, 2022; MERCEDES-BENZ, 2022; VOLVO, 2022). 

For CO2 emission factors, we have used the average value and ±10% as a range of 

uncertainty.  

The sensitivity test was performed with the Latin Hypercube Sampling method (200 

simulations), which is considered appropriate for SD models (FORD, 2009; KWAKKEL 

and PRUYT, 2013). In this method, the range of possible values for each parameter is 

divided into 𝑁 strata of equal probability. For each input parameter, it selects one value 

of the 𝑁 strata on a random basis, which is repeated in all simulations (FORD, 2009). The 

uncertainties in the parameters are described as uniformly distributed, as we are interested 

in the diversity of dynamics that can be generated, and not in accurately predicting the 

probability of these dynamics (KWAKKEL and PRUYT, 2013). The sensitivity 

simulation is provided by the software Vensim® Pro. The sensitivity graph shows the 

base case run as a solid blue line. The yellow area shows the 50% confidence bound 

estimated from the 200 simulations. The same is true for the green area with 75% 

confidence, the blue area with 95% confidence, and the grey area with 100% confidence. 

Figure 4.16 presents the sensitivity graph for truck, train, and barge fleets. 

 
Figure 4.16 – Sensitivity analysis for truck, train, and barge fleets. 
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The truck fleet uncertainty ranges from 1,7 million to 17,5 million in 2050, while the train 

and barge fleets range from 2.967 to 30.934 and from 1.560 to 22.327, respectively. These 

huge variations can be explained by the incidence of two uncertain parameters (transport 

activity and the level of transport activity performed by vehicle), which both impact the 

level of the fleets. Moreover, the uncertainty is low in the first decade and tends to 

increase in the last two decades of simulation, as a consequence of stock accumulations 

in the long term. Despite the numerical uncertainty, the pattern of behavior is kept through 

time. Figure 4.17 shows the sensitivity graph for diesel/biodiesel, CNG, electricity, 

hydrogen, and biomethane consumption from the road transport mode.  

 
Figure 4.17 – Sensitivity analysis for diesel/biodiesel, CNG, electricity, hydrogen, and 

biomethane consumption from the road mode. 

From the uncertainty bounds, we can say that most of the simulations (out of the 200 

simulations) are above the baseline. The consumption of alternative energy sources starts 

showing significant uncertainty for the scale used after the second half of the first decade, 

due to the slow introduction of policies towards alternative fuels.  



 

106 
 

The sensitivity analysis for the rail and waterway modes shows similar behavior to the 

road mode regarding diesel and electricity consumption, except that electricity 

consumption for these modes starts to be significant after 2035. Figure 4.18 shows the 

sensitivity graph for diesel and electricity consumption from the rail and waterway 

modes. 

 
Figure 4.18 – Sensitivity analysis for diesel, and electricity consumption from the rail and 

waterway modes. 

Finally, the sensitivity analysis for CO2 emissions is represented in Figure 4.19. By the 

scale, we can note the similarity of total freight emissions and road CO2 emissions, as the 

majority of emissions come from this mode. The lower and upper bounds of the 

uncertainty of total freight emissions range from 2,47 billion to 27,33 billion tons in 2050. 

Despite the different speeds, all simulations present the same growth behavior. 

Although the numerical results present great uncertainties, especially in the long term, the 

behavior mode sensitivity analysis has revealed that the model is robust, that is, the 

general pattern of behavior is not altered by changes in the estimates of the parameters. 
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Figure 4.19 – Sensitivity analysis for CO2 emissions from the road, rail, and waterway modes 

and total freight CO2 emissions. 

Regarding the policy sensitivity test, we have tested the proposed policies individually 

under the parameter variations to be able to assess their impacts on the results. The tested 

policies are: (i) policies towards alternative modes; (ii) policies towards alternative fuels 

(including the blend of diesel and biodiesel); and (iii) policies towards speeding up fleet 

renewal. The results are compared with the business-as-usual (BAU) scenario, in which 

no policy is applied. Unlike the scenarios for simulating the results presented in Section 

4.4, in which policies are simulated with fixed input parameters, here we simulate the 

impact of policies on emissions under varying input parameters within uncertainty 

bounds. Figure 4.20 shows the policy sensitivity results for the variable “total freight 

emissions”.  

 
Figure 4.20 – Policy sensitivity analysis for total freight CO2 emissions. 
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The lower and upper bounds of total freight emissions uncertainty are 2.73 billion and 

35.26 billion tons in 2050. Numerically, this range of uncertainty is higher than when the 

policies were set unchanged. However, none of the policies caused an undesired impact 

(increase) on emissions under input parameters variation. The only policy that presented 

a result equal to the BAU scenario was Policy (iii), which means that individually it does 

not have an impact on emissions and that, therefore, it should be applied in a 

complementary way with other policies. Although the results are numerically sensitive to 

the uncertainty of the parameters, the model showed robustness in the behavior mode and 

policy sensitivity tests. 

4.4 Scenarios setting and results 

The scenarios are based on some key model variables related to the decarbonization 

policies to change the behavior of the freight transport system. Specifically, the model 

has four policies: (i) policies toward alternative modes; (ii) policies toward alternative 

fuels; (iii) policies toward increasing the percentage of biodiesel in diesel blend; and (iv) 

policies toward speeding up fleet renewal. Each policy has a configuration set regarding 

its implementation goals and deadlines.  

Regarding policies towards alternative modes, Brazilian’s National Logistics Plan – NLP 

2035 (MINISTRY OF INFRASTRUCTURE and EPL, 2021) predicts three different 

setups of modal share in 2035, each one depending on a set of infrastructure investments 

in the Brazilian transport network to reduce the roadway share and increase the railway 

and waterway share. Table 4.15 presents the setups for policies toward alternative modes. 

Table 4.15 – Initial modal share and projections for 2035 (%). 
Modes 2020 Setup 1 Setup 2 Setup 3 

Roadway 63.3 55 40 32 

Railway 21.7 31 43 47 

Waterway 14.9 13 16 19 

Source: EPE (2022); MINISTRY OF INFRASTRUCTURE and EPL (2021). 

Concerning the policies toward alternative fuels, Table 4.16 shows two configuration sets 

(Setups 1 and 2) predicted by BCG and ANFAVEA (2021), regarding the percentage of 

use of each energy source by trucks in 2035. For railways and waterways, we have 

considered independent initiatives announced by some concessionaires to be met in 2050. 

For all modes, Setup 3 was added to assess the impact of a more restricted policy in the 

longer term (2050). 
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Table 4.16 – Energy share and projections for 2035 (road) and 2050 (rail and waterways) (%). 
Modes Fuels 2020 Setup 1 Setup 2 Setup 3 

Roadway 

Diesel/biodiesel 100 86 68 0 

Natural gas/biomethane 0 7 10 50 

Electricity 0 7 15 40 

Hydrogen 0 0 7 10 

Railway and waterway 
Diesel 100 100 50 0 

Electricity 0 0 50 100 

Source: based on BCG and ANFAVEA (2021); VLI (2022); RUMO (2022); VALE (2022).  

For policies towards increasing the percentage of biodiesel in diesel blend, Table 4.17 

shows two configuration sets, also predicted by BCG and ANFAVEA (2021) for 2035. 

Table 4.17 – Biodiesel percentage in diesel blend and projections for 2035. 
Fuels 2020 Setup 1 Setup 2 

Diesel 88 82 70 

Biodiesel 12 18 30 

Source: based on BCG and ANFAVEA (2021). 

Lastly, the policy towards speeding up fleet renewal was proposed to assess the impact 

of accelerating the scrappage rate of the old truck fleet. In this case, the only decision is 

the application of such policy, when, and with which duration. Table 4.18 shows the 

business-as-usual (BAU) and all the proposed scenarios, each one with a specific 

combination of the policies’ setups and their respective time limit to be met (defined in 

the RAMP function).  

In the BAU scenario, no policy is applied, and the freight transport modal and energy 

source shares remain the same as in 2020. 

Scenarios collection 1, composed of scenarios 1 to 8, aims to evaluate the individual 

impact of each setup of policies toward alternative modes, policies toward alternative 

fuels, and policies toward increasing the percentage of biodiesel in diesel blends. 

Scenarios collection 2, composed of scenarios 9 to 17, aims to evaluate the impact of all 

possible combinations between the setups of the policies towards alternative modes, and 

policies towards alternative fuels.  

Scenarios collection 3, composed of scenarios 18 to 26, considered three of the previous 

scenarios (a conservative, a moderate, and an innovative). For each one of them, we have 

added setup 2 for policies toward increasing the percentage of biodiesel in diesel blend 

and varied the time limit of the policy towards speeding up fleet renewal (in which the 

goal should be met: 2025, 2030, or 2035). 

Given the uncertainty of the time frame in which the policies will be met, in scenarios 

collection 4, composed of scenarios 27 to 32, we also simulated two different limits of 
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time (2025 and 2050) for policies toward alternative modes and policies toward 

alternative fuels. 

Finally, scenarios collection 5, composed of scenarios 33 to 35, evaluates the variation of 

the results given the uncertainty range of the freight transport demand, considering a 

steady percentage drop, a steady percentage increase, and a random variation for the 

percentage of demand oscillation of freight transport. 

Table 4.18 – Proposed scenarios for simulation. 

Collection 

of 

scenarios 

Scenarios 

Setups of 

alternative 

modes  

Setups of 

alternative 

fuels 

Setups 

of 

biodiesel 

use 

RAMP 

alternative 

modes 

RAMP 

alternative 

fuels and 

biodiesel 

RAMP 

speed up 

the fleet 

renewal 

BAU BAU 0 0 0 0 0 0 

1 

Scenario 1 1 0 0 2035 0 0 

Scenario 2 2 0 0 2035 0 0 

Scenario 3 3 0 0 2035 0 0 

Scenario 4 0 1 0 0 2035 0 

Scenario 5 0 2 0 0 2035 0 

Scenario 6 0 3 0 0 2050 0 

Scenario 7 0 0 1 0 2035 0 

Scenario 8 0 0 2 0 2035 0 

2 

Scenario 9 1 1 0 2035 2035 0 

Scenario 10 1 2 0 2035 2035 0 

Scenario 11 1 3 0 2035 2050 0 

Scenario 12 2 1 0 2035 2035 0 

Scenario 13 2 2 0 2035 2035 0 

Scenario 14 2 3 0 2035 2050 0 

Scenario 15 3 1 0 2035 2035 0 

Scenario 16 3 2 0 2035 2035 0 

Scenario 17 3 3 0 2035 2050 0 

3 

Scenario 18 1 1 2 2035 2035 2035 

Scenario 19 1 1 2 2035 2035 2030 

Scenario 20 1 1 2 2035 2035 2025 

Scenario 21 2 2 2 2035 2035 2035 

Scenario 22 2 2 2 2035 2035 2030 

Scenario 23 2 2 2 2035 2035 2025 

Scenario 24 3 3 2 2035 2050 2035 

Scenario 25 3 3 2 2035 2050 2030 

Scenario 26 3 3 2 2035 2050 2025 

4 

Scenario 27 1 1 2 2025 2025 0 

Scenario 28 1 1 2 2050 2050 0 

Scenario 29 2 2 2 2025 2025 0 

Scenario 30 2 2 2 2050 2050 0 

Scenario 31 3 3 2 2025 2025 0 

Scenario 32 3 3 2 2050 2050 0 

5 

Scenario 33 3 3 2 2035 2050 0 

Scenario 34 3 3 2 2035 2050 0 

Scenario 35 3 3 2 2035 2050 0 

 

For all scenarios, the main numerical output related to total freight emissions is presented 

in Appendix C.  
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4.4.1 BAU Scenario 

In the BAU scenario, in which no policy is applied to reduce the emissions from the 

freight transport sector, we present the results regarding the truck fleet size, truck sales, 

fuel consumption, and emissions. Figure 4.21 presents the total truck fleet and truck sales 

per year.  

 
Figure 4.21 – Total truck fleet and truck sales per year. 

In this scenario, the total truck fleet will increase from nearly 2 million in 2020 to more 

than 5.5 million in 2050. The truck sales will range between 250 and 570 thousand units 

per year to replace the scrapped vehicles and meet the growing demand. However, in this 

scenario, diesel is the only fuel used for all freight transport modes4. Figure 4.22 presents 

the total diesel consumption and the diesel consumption by mode.  

 
(a)                                                                          (b)  

Figure 4.22 – Diesel consumption from (a) road and all modes and (b) rail and waterways  

Diesel consumption will almost triple in 20 years, in which road mode will be responsible 

for 95%, while rail and waterway modes for 3% and 2% of diesel consumption, 

 
 

4 For trucks, we refer to diesel already considering 12% of biodiesel in the blend. 
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respectively. It will also reflect in the CO2 emissions of each transport mode. Figure 4.23 

shows the emissions from each mode and the total freight emissions.  

 
(a)                                                                                  (b)  

Figure 4.23 – CO2 emissions from (a) rail and waterways, and (b) road and all modes. 

As expected, most CO2 emissions come from the road transport mode, reaching an 

accumulation of approximately 9 billion tons in 2050. In this case, the estimated 

emissions budget for the Brazilian freight sector for limiting global warming to 1.5°C or 

2°C will be reached in 2025 and 2032, respectively.  

4.4.2 Scenarios collection 1 

In the first scenarios collection, we assess the individual impact of each one of the 

different policy setups on freight emissions. Scenarios 1, 2, and 3 are related to the gradual 

increase in the use of alternative modes (railways and waterways). Scenarios 4, 5, and 6 

are related to the gradual increase in the use of alternative fuels (electricity, hydrogen, 

and natural gas/biomethane). Scenarios 7 and 8 are related to the increase in the 

percentage of biodiesel in diesel. Figure 4.24 shows the results of the first six scenarios 

in comparison with the BAU scenario. 

Road emissions and total freight emissions present the same behavior, with BAU being 

the worst scenario. On the other hand, it is interesting to note that Scenarios 2 and 3 (both 

about decreasing the road share and increasing the alternative modes share) have a better 

impact on emissions than all the scenarios of policies regarding alternative fuels. This is 

true at least for the time horizon considered since Scenario 6 aims to eliminate the sale of 

diesel-powered vehicles (trucks, trains, and barges) by 2050. After this implementation 

period, Scenario 6 would be the best in terms of reducing CO2 emissions, despite the 

remaining diesel-powered vehicles circulating in the market until they are completely 

scrapped. Rail and waterway emissions, however, would increase under policies 
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promoting these alternative modes of transport, as expected, while policies promoting 

their electrification would reduce their emissions. 

 
Figure 4.24 – CO2 emissions in Scenarios 1 to 6 compared to the BAU Scenario.  

Regarding Scenarios 7 and 8, we compared the emissions from the road mode under 

policies towards increasing the percentage of biodiesel in diesel from the current 12% to 

18% and 30%, respectively. Figure 4.25 shows that these policies do not have a significant 

impact on road emissions compared to the BAU scenario. The reduction of accumulated 

emissions in 2050 would be 0.5% and 1.5% under Scenarios 7 and 8, respectively. 

 
Figure 4.25 – CO2 emissions in Scenarios 7 and 8 compared to the BAU Scenario. 

In all the scenarios, the estimated emissions budget for the Brazilian freight sector for 

limiting global warming to 1.5°C would be reached in 2025. Regarding the budget for 

limiting global warming to 2°C, it would be reached in 2035 in the best Scenario 3. 

4.4.3 Scenarios collection 2 
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In the second scenarios collection, we assess the effect of all setup combinations of the 

policies toward alternative modes and policies towards alternative fuels. Figure 4.26 

shows the results of total freight emissions and emissions by mode in comparison with 

the BAU scenario.    

 
Figure 4.26 – Total freight CO2 emissions in Scenarios 9 to 17 compared to the BAU Scenario. 

Despite rail and waterway emissions increase under the applied policies, in a system-wide 

perspective, total emissions can decrease by up to 50% in Scenario 17, in which policies 

aim at a drastic reduction in the use of the road mode, in addition to zeroing out the sales 

of diesel-powered vehicles by 2050. 

In all scenarios, the estimated emissions budget for the Brazilian freight sector for limiting 

global warming to 1.5°C would be reached in 2025. Regarding the budget for limiting 

global warming to 2°C, it would be reached in 2035 in the best Scenarios 15, 16, and 17. 

4.4.4 Scenarios collection 3 

Considering the previous results, we have chosen three perspectives to analyze: a 

conservative, Scenario 9; a moderate, Scenario 13; and an innovative one, Scenario 17. 

Figure 4.27 shows the road share and the percentage of diesel-powered truck sales in the 

chosen scenarios. 
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(a)                                                                     (b) 

Figure 4.27 – (a)Road share and (b) share of diesel truck sales, in Scenarios 9, 13, and 17.  

Road share stabilizes in 2035 at 55%, 39%, and 32% in Scenarios 9, 13, and 17, 

respectively. Sales of diesel trucks fall progressively and reach 86% in 2035 in Scenario 

9, 68% in 2035 in Scenario 13, and 0% around 2040 in Scenario 17. It means that from 

the conservative perspective, the traditional transport mode and energy source are still in 

high use for decades ahead. In contrast, in the innovative perspective, the traditional gives 

more space to alternative transport modes and energy sources, while the moderate 

perspective is in-between the conservative and innovative cases. It is important to note 

that some targets of policies are faster to implement, bringing light emissions mitigation, 

while more ambitious targets might take more time to be implemented, showing better 

decarbonization results. Policy-makers have to be aware of this trade-off to make 

decisions aligned with their specific emissions budgets and timeframes.      

For each one of the three scenarios, we have added the policies toward speeding up fleet 

renewal with three different time limits (in which the goal should be met: 2025, 2030, or 

2035). The goal of this policy is to accelerate the scrappage rate of old diesel-powered 

trucks to increase the demand for trucks powered by alternative fuels. Figure 4.28 presents 

the market share of diesel-powered trucks in all considered scenarios. 

In the conservative case, by speeding up the truck scrappage rate, the market share of 

diesel-powered trucks falls from 86% to 80% in 2050 (comparing Scenarios 18-20 and 

Scenario 9). In the moderate case, the market share of diesel-powered trucks falls from 

69% to 58% (comparing Scenarios 21-23 and Scenario 13), and in the innovative case, it 

falls from 9% to 1% (comparing Scenarios 24-26 and Scenario 17). 
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Figure 4.28 – Market share of diesel-powered trucks for a conservative, moderate, and 

innovative context.  

Figure 4.29 presents the total CO2 emissions for the conservative case in Scenarios 18, 

19, and 20, in comparison with the original Scenario 9; the moderate case in Scenarios 

21, 22, and 23, in comparison with the original Scenario 13; and the innovative case in 

Scenarios 24, 25, and 26, in comparison with the original Scenario 17. 

 
Figure 4.29 – Total freight CO2 emissions for a conservative, moderate, and innovative context.  

Scenarios 18 to 20 show a reduction of approximately 4% in emissions compared to 

Scenario 9. Scenarios 21 to 23 have a reduction of 7% compared to Scenario 13 and in 
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Scenarios 24 to 26, the emissions reduction is 6% in comparison to Scenario 17. In other 

words, the scenarios in which there is an acceleration of truck scrapping present a slight 

reduction in emissions compared to the scenarios in which there is no such acceleration. 

However, there is no significant difference in emissions between the scenarios in which 

scrapping accelerates over 5, 10, or 15 years. 

In all the scenarios, the estimated emissions budget for the Brazilian freight sector for 

limiting global warming to 1.5°C would be reached in 2025. Regarding the budget for 

limiting global warming to 2°C, it would be reached in 2035 in Scenarios 21 to 26. 

4.4.5 Scenarios collection 4 

In scenarios collection 4 (Scenarios 27 to 32), we evaluate the time limit for implementing 

policies regarding alternative modes and alternative fuels, since these are the policies with 

greater potential for reducing emissions. For each scenario, the simulated deadlines for 

the established policies’ targets to be reached are 2025 and 2050. The results are 

compared with the scenarios in which policies implementation deadline is 2035 

(Scenarios 9, 13, and 17 for a conservative, moderate, and innovative comparison, 

respectively). Figure 4.30 shows the results for total freight emissions in each case 

individually, and all together.  

 
Figure 4.30 – Total freight emissions by varying the time limit of policies regarding alternative 

modes and fuels. 
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Table 4.19 shows the percentage of total freight emissions reduction by varying the time 

range of the policies' implementation. 

Table 4.19 – Emissions reduction by policies level and their implementation time range. 
Policies level Scenarios Policies time range Emissions reduction (%) 

Conservative 

Scenario 27 2020-2025 18 

Scenario 9 2020-2035 14 

Scenario 28 2020-2050 10 

Moderate 

Scenario 29 2020-2025 46 

Scenario 13 2020-2035 37 

Scenario 30 2020-2050 27 

Innovative 

Scenario 31 2020-2025 71 

Scenario 17 2020-2035 50 

Scenario 32 2020-2050 38 

 

Combining policies toward alternative modes and fuels in a conservative context would 

reduce freight emissions by 14% if the established targets for market shares of transport 

modes and alternative fuel vehicle sales are to be met in 2035. In case these policies are 

advanced or delayed, the emissions reduction varies between 10% and 18%. For the 

moderate level of policies, freight emissions can decrease between 27% and 46%. In an 

innovative level of policies, such reduction would be between 38% and 71%. 

The estimated emissions budget for the Brazilian freight sector for limiting global 

warming to 1.5°C would be reached in 2025, except in Scenarios 29 and 31, in which it 

would be reached in 2026. Regarding the emissions budget for limiting global warming 

to 2°C, it would be reached in 2049 in the best Scenario 31. 

4.4.6 Scenarios collection 5 

Finally, considering that the input variable related to the variation in future demand for 

freight transport is highly relevant and significantly impacts the model results, we 

simulate three scenarios based on the minimum and maximum values from the historical 

data series (EPE, 2022): Scenario 33 with a constant decline in freight demand (-0.32%); 

Scenario 34 considering a steady increase in freight demand (7.6%); and Scenario 35 

considering a random variation between the previous limits, with increases and decreases 

over the next three decades. All scenarios were based on Scenario 26 (with an average 

freight demand). Figure 4.31 presents the total freight emissions in all cases. 
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Figure 4.31 – Total freight emissions under freight demand variations. 

The accumulated emissions in 2050 in Scenario 35 under the random variation of the 

demand for freight transport is close to the accumulated emissions under the average 

demand considered in Scenario 26. Scenario 33 presents 66% and Scenario 34 presents 

175% of the accumulated emissions in comparison to Scenario 26 of average demand. 

The estimated emissions budget for the Brazilian freight sector for limiting global 

warming to 1.5°C would be reached in 2025, while the budget for limiting global warming 

to 2°C would be reached in 2042 in the best Scenario 33. 

4.5 Discussions 

Based on the results of Scenarios collection 1 (Scenarios 1 to 8), which simulates the 

individual impact of policies toward alternative modes, policies toward alternative fuels, 

and policies toward increasing the percentage of biodiesel in diesel blend, it is evident 

that policy incentives are required in the country to obtain a higher decarbonization result. 

When compared against the BAU (where no policy incentive is applied), all policies 

(irrespective of the differences between specific scenario runs) turn out with a lower rate 

of total emissions from the freight transport system. More specifically, Scenario 3 obtains 

a 36% emissions reduction in comparison to the BAU scenario, the highest of all three 

policies. Still, even the least successful scenario in this collection (Scenario 7) obtains a 

0.5% reduction, when compared to the BAU scenario. In practical terms, Scenario 3 

means to change the modal share and reduce the percentage of use of the road mode from 

63% to 32% in 15 years. Railways and waterways would have to increase their shares 

from 22% to 47% and from 15% to 19%, respectively, which depend on a set of 

aggressive infrastructure investments in strategic railway and waterway sections in 

addition to supporting logistics infrastructure (MINISTRY OF INFRASTRUCTURE and 
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EPL, 2021). In addition, our results show the lagged response of emissions mitigation to 

incentive policies. All scenarios show little difference from each other in the short to mid-

term (until 2030 approximately) and only begin to show differences from 2030 onwards. 

In other words, nearsighted policymaking may hinder the policies’ benefits in the long 

term if implementation delays are not taken into account.  

Afterward, we developed Scenarios collection 2 (Scenarios 9 to 17) by combining 

policies toward alternative modes and alternative fuels. The rationale behind these 

scenarios is that, usually, more than one policy is active at the same time. Depending on 

the policy combination, our results suggested lower emissions from the freight system 

than when the policies were implemented separately. The best scenario in this collection 

(Scenario 17) achieved a 50% emissions reduction in comparison to the BAU scenario, 

while the worst (Scenario 9) achieved a 14% of emissions decrease. It is worth noting 

that the second set of experiments allows us to measure and assess the compounded effect 

of simultaneous policies on the freight decarbonization potential and therefore, offer a 

more realistic set of scenarios to forecast the possible emissions drop. 

Then, Scenarios collection 3 (Scenarios 18 to 26) aimed to assess the impact of policies 

toward speeding up the fleet renewal process by accelerating the scrappage rate of old 

diesel-powered trucks. The scenarios in which there is an acceleration of truck scrapping 

modify the market share between vehicles powered by different energy sources and a 

slight reduction in emissions compared to the scenarios in which there is no such 

acceleration. From a policymaking perspective, the composite policy set investigated 

herein offers novel insights into the effects of policy timing to obtain the best possible 

outcomes in the long term. For instance, the activation and deactivation of the 

aforementioned policies could be sequenced for longer timeframes until there are diesel-

powered trucks in the fleet, working as an extra incentive for some agents such as the 

investors of alternative energy sources for the automotive sector. 

Scenarios collection 4 (Scenarios 27 to 32) was run based on the uncertainty of the time 

needed to implement and reach each policy’s established goals. Considering the policies 

toward alternative modes and fuels, we have simulated three timeframes of 5, 15, and 30 

years for a set of scenarios in conservative, moderate, and innovative contexts. The 

rationale behind this fourth experiment is that the most effective results come by 

implementing the policies as fast as possible. In all cases, the faster policies are 

implemented, the more significant the improvements in terms of emissions drop. 
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Naturally, it means a highly aggressive effort to implement and achieve ambitious targets 

in the short term, including radical changes in energy, technology, and infrastructure 

systems, which feasibility or cost-benefit should be better analyzed. 

Scenarios collection 5 (Scenarios 33 to 35) shows how the uncertain range of freight 

demand can impact the emissions results. Taking the minimum and maximum limits from 

the historical series (EPE, 2022) of freight transport demand, total freight emissions 

almost tripled in a period of 30 years. This means that the input variable related to freight 

demand variation could be better modeled from a macroeconomic perspective in future 

research. 

From the results and discussions presented, it is clear and urgent the need for coordinated 

cooperation and broad participation of the government and other stakeholders capable of 

sustaining, encouraging, and enabling innovative scenarios that bring compelling results 

for the freight transport decarbonization in Brazil. All the policies presented are important 

to a greater or lesser extent on the path to decarbonization. Naturally, some policies are 

easier and faster to implement than others (increasing the percentage of biodiesel in the 

diesel blend and speeding up the fleet renewal process take less effort and investment 

than changing the fleet technologies and the modal split). The joint implementation of 

such policies brings greater benefits in a shorter time and becomes important due to joint 

efforts to balance the effect of increased demand for freight transport in the coming years, 

despite the intrinsic delays in their implementations. As mentioned in the qualitative 

research section, the individual effort of a system stakeholder, such as the interviewed 

freight forwarders, is neither sufficient nor capable of achieving the necessary goals. It 

takes a joint effort from various sectors so that the change in the system occurs on a large 

scale and, consequently, the results of decarbonization are enhanced and achieved within 

the desired timeframes. 

On the other hand, it is worth highlighting that the budget estimated for the sector’s 

emissions, suggested in this work due to the absence of official targets, is very superficial 

and should be analyzed with caution. Firstly, the estimate is based on the percentage of 

sector emissions in 2020 compared to global emissions, which is expected to change over 

the next few years. Secondly, this percentage of emissions should not necessarily 

guarantee or impose the same percentage of the global budget for future freight emissions. 

It is necessary to consider a fairer balance between countries that have historically 

developed and polluted more and countries that are still developing and that tend to suffer 
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more from the consequences of global warming. However, the proposal of a specific 

target to reduce sectoral emissions of Brazilian freight transport is outside the scope of 

this work, being suggested as a topic for future research. Despite this limitation to 

analyzing the emissions budgets of the Brazilian freight sector, which should not be as 

restricted as those of developed countries, the results corroborate the urgency for more 

forceful actions to promote decarbonization. In all scenarios, the sector budget to limit 

global warming to 1.5°C would be reached in 2025, while the budget to limit global 

warming to 2°C would be reached in 2032 in the BAU scenario; in 2035 in the Scenarios 

collection 1, 2 and 3; in 2042 in Scenarios collection 5; and in 2049 in Scenarios collection 

4. Such results indicate that limiting global warming to 1.5°C or 2ºC until 2100 as defined 

in the Paris Agreement is beyond reach. Despite being a limited uni-sectoral analysis, the 

results show how close we are to reach the limits defined for global warming. In fact, we 

do not have more time to delay the necessary actions and spare efforts to face such a great 

challenge with the serious and collaborative engagement of stakeholders. 

Of course, the unavoidable assumptions made in our model regarding the timeframes of 

policy implementation have a big role in the presented results. For example, if the fleet 

renewal process takes 15 years as simulated in the basic scenarios, or if it ranges between 

5 and 30 years as simulated in the later scenarios, will impact the time in which the 

emissions budgets will be reached. However, the real-time for fleet renewal process to 

occur on a large scale is still uncertain. As discussed in the qualitative research section, 

the time for freight carrier companies to acquire alternative fuel vehicles can reach two 

years if their conditions are favorable. For example, highly capitalized companies do not 

depend on the collaboration of other sectors, although the last is considered imperative 

for the introduction of new technologies on a large scale in the market, reducing their 

adoption times by small companies and autonomous drivers. However, uncertainty 

remains about the time frame for the involvement of other sectors, such as infrastructure, 

regulation, and energy.    

Given the research gap found in the literature about SD models that do not present their 

data or assumptions regarding the delays for policies or improvement actions 

implementation (GHISOLFI et al, 2022a), our model still makes a contribution to the 

literature and policymaking by clearly presenting and giving an orientation of how 

important theses implementation times are for achieving better results. 
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From the government perspective, our model helps by showing the potential of emissions 

mitigation results considering the combined effect of multiple decarbonization policies. 

As already mentioned, priority should be given to policies towards promoting alternative 

energy sources, especially green or clean energy sources, since they are the only pathway 

to deep freight decarbonization. Other measures, however, are also important to mitigate 

the emissions in the meantime, given that the total fleet replacement is not fast, but takes 

a considerable time, as shown by our model. Even after the sale of fossil fuel vehicles is 

banned, we may deal with an old fleet running in the market for a long time if the 

acceleration of scrappage of the old fleet does not take place. Despite the timeframe for 

policy implementation and emissions budget assumptions, which are subject to 

improvements, our model supports policymaking in the freight transport sector by 

presenting emissions mitigation results over time. It is important to assist decisions in a 

sector with a limited emissions budget and a short deadline imposed by the urgency of 

global climate actions and the engagement of all countries and sectors.  

4.6 Final remarks of the chapter 

In this study, we developed an SD model and conducted several simulation experiments 

to investigate the impact of four policies in the long-term freight transport 

decarbonization in Brazil: 1) policies toward alternative modes; 2) policies toward 

alternative energy sources; 3) policies toward increasing the percentage of biodiesel in 

diesel blend; and 4) policies toward speeding up the fleet renewal process. 

The simulation results showed that no single measure can bring a significant reduction in 

freight transport emissions. Instead, a set of policies is needed to achieve a compelling 

decarbonization result. Moreover, the sooner the policies are enforced, the better the 

emissions abatement in the long run. Besides, it is important to take the delays of policies’ 

implementation carefully, since nearsighted policymaking may hinder their benefits in 

the long term. 

Certainly, several economic, social, and technological conditions are unknown in the long 

term and, therefore, this simulation exercise should be taken with caution. For example, 

a new technological paradigm and better solutions can emerge within the simulated 

timeframe, which should be continuously reviewed and updated. Rather than offering a 

precise forecast of emissions reduction, its essence is to offer a perspective of the need to 

reinforce policies in the forthcoming years and decades if we are willing to decarbonize 



 

124 
 

the freight transport system. Our model proves useful to test the performance and offers 

insights to inform policymakers about the expected outcomes of policy interventions – 

from a complex systems perspective, in line with current debates and challenges within 

environmental and freight transport-related policymaking. 

Scientifically, our model contributes by starting to closing the literature gaps reported by 

GHISOLFI et al. (2022a) regarding a simulation model with multiple freight 

decarbonization policy measures in a system-wide perspective and deepening the 

knowledge about the temporal factors that govern the dynamics of the system’s responses 

to policies implementation, even by highlighting the real data or the unavoidable 

assumptions in a clear and reproducible model. 

Even though our model offers a comprehensive perspective of freight decarbonization 

policies, there are many possibilities for future research. Besides the policies’ targets and 

timeframes explored, future research could address how the considered policies will be 

implemented, i.e., investing in the generation and distribution of alternative energy to 

meet the increasing power demand, investing in vehicle’ technologies development in the 

national market, providing tax and fee exemptions, subsidies, promoting the expansion 

of refueling/recharging facilities, or investing in electric road systems such as overhead 

lines (pantographs) and conductive/inductive ground-level power supply, imposing 

higher taxes on fossil fuels, etc. Regarding alternative transport modes, it could be not 

only by infrastructure investment but also by imposing barriers or financial levers to 

discourage or promote different modes of transport. This could integrate a choice 

modeling approach from the freight forwarders’ perspective to better investigate the most 

influencing parameters of their choice decisions regarding the adoption of alternative fuel 

vehicles and transport modes.  

Moreover, the model could be expanded and other policies added, such as those related 

to the improvement of vehicles’ energy efficiency and vehicle use (how much transport 

activity a vehicle performs per year), taken in this study as input variables. Another input 

that deserves more attention is the freight transport demand and the factors that influence 

its variation, especially considering the future market trends. It is very important to better 

understand the dynamics of the freight demand given its high influence on the rest of the 

system. Variables related to population, economic development, market factors, and 

patterns of consumption play a role in such dynamics to be modeled. Another pertinent 

approach to enrich the proposed model could be the life cycle analysis (well-to-wheel) of 
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the energy sources considered, in contrast to the tank-to-wheel analysis of this study, 

showing how clean alternative energies are for each case study.  

Also, several assumptions were made to build the SD model, i.e., the homogeneity of 

vehicles without distinction of types, sizes, and other technical specificities that influence 

transport activity per year and fuel consumption. However, it is important to highlight 

they can be modified and updated as more data becomes available, depending on the 

desired level of detail and accuracy. Although the assumptions regarding the time limits 

for policy targets to be met were based on predictions from government technical reports, 

consultancy groups, and empirical research in the transport sector, they remain highly 

uncertain, needing to be continuously monitored and updated according to the real agents’ 

engagement. Future empirical research could be carried out with the energy generation 

and distribution sector, investors of infrastructure, governmental policymakers, and 

consumers to raise better knowledge of the impact of their decisions on freight system 

dynamics. 

Other empirical research on the freight transport system can be carried out about its 

rebound effects. For example, the vehicle’s fleet is a limited stock to meet a given freight 

transport demand, which means that for new green technologies to enter the market 

sooner, old fleets must be scrapped faster. More research is needed about the factors that 

can boost this dynamic of vehicle replacement, but also how we should deal with a large 

amount of scrap resulting from this process. It is important to bear in mind the 

responsibility of reusing and recycling, reintroducing materials from the old fleet into the 

supply chain, in addition to planning the environmental future of new fleets with the 

recycling of batteries and their scarce elements.     

Finally, the model can be applied to any region or country by collecting all the necessary 

data and by adapting the model to their specific target decarbonization policies. Of course, 

it would require an analysis of the specific context to be modeled. The model can be 

adapted with different variables since new decarbonization policies can emerge from a 

different reality. The Group Model Building, a workshop method with multiple system-

related agents can help with the conceptual modeling process to identify the important 

factors to be kept and/or changed in the model.   
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5 Conclusions 

This work analyzed the dynamics of the freight transport system toward decarbonization 

through a systematic literature review, the development of a conceptual model composed 

of causal loop diagrams, and the development and application of a System Dynamics 

model. 

The systematic literature review aimed to answer the first research question: What are the 

gaps in the dynamics of freight transport decarbonization research? The literature review 

of SD models of freight transport decarbonization pointed to a research gap regarding the 

effort to model the freight decarbonization measures in a system-wide perspective, to 

explore the understanding of the dynamics of the feedback loops that exist within the 

system, to analyze whether, how, and when a certain level of emissions reduction can be 

achieved. Moreover, the time-related factors such as delay assumptions are not clear in 

the models’ descriptions, equations, and diagrams for each decision. The study concludes 

that this is a major problem because time is crucial for assessing whether simulated policy 

measures effectively achieve decarbonization targets in the short, medium, and long term 

and that time lags should be taken into account, in an empirically rigorous way, for freight 

transport decarbonization models to predict dynamics well. 

In the next step of the research, a conceptual model of causal loop diagrams was 

developed to answer the second research question: How can we conceptually model the 

dynamics of the freight transport system to decarbonization measures? The model linked 

five decarbonization measures as sub-models raising feedback loops between their main 

components and showing how these measures affect each other in a reinforcing or 

balancing way, bringing a more comprehensive view of the system. Moreover, the model 

pointed out the dynamic levers as policies to promote or stimulate decarbonization, which 

should be the focus of policymakers to change the status of the system. The identified 

feedback loops are also dynamic levers that show how the whole system is connected, 

showing policymakers the possible side effects of their policies that could defeat the 

desired results. This qualitative analysis contributes to the literature with insights into the 

dynamics of the implementation of decarbonization strategies that can delay or speed up 

the system’s change over time due to the behavior of exponential growth or balancing 

feedback loops. 
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Then, we developed an SD quantitative model to address the third research question: How 

can we quantitatively model the multiple dynamics of the freight transport 

decarbonization system? By simulating the dynamics of four different policies, the 

proposed model is a useful tool for policymakers to gain insights into the expected 

emissions mitigation results under policy interventions. The more policies are combined 

and the faster they are implemented, the better the emissions abatement in the long run. 

Despite the assumptions made, this quantitative model contributes to the literature by 

integrating different decarbonization measures and highlighting the important temporal 

factors related to their implementation. 

Despite the thesis reaching its proposed objective, many literature gaps identified in 

Chapter 2 were not addressed, being left for future research. For example, the rebound 

effect of transport efficiency on logistics costs and, consequently, on freight demand, was 

not considered in our model. In fact, the dynamics of all decarbonization strategies 

regarding managing or reducing freight transport demand, improving vehicle utilization, 

and increasing energy efficiency were left out of our modeling approach. It means that 

the literature gap about the limited boundaries of freight decarbonization SD models was 

just partially filled with our quantitative model that addressed policies for shifting freight 

to low-carbon intensity modes and promoting alternative energy sources. Regarding the 

addressed decarbonization strategies, our model analyzed them from a macro perspective 

view to simulate their general implementation times and impacts on emissions mitigation. 

More detailed and empirical studies can enrich the analysis by considering, for example, 

all the associated costs and times for each step of the mode choice process, fuel-vehicle 

choice decisions, and companies’ adaptation.  

5.1 Further research 

The assumptions made concerning important policy dynamics should be approached by 

future research. This can be done by enriching the proposed SD model with studies of 

specific policies or decisions, or by modeling them independently with system dynamics 

models, time series models, or agent-based models. Based on such empirically validated 

models, the task of integration into large system dynamics models could be undertaken 

in future research. 

As an example, the decarbonization policy regarding reducing freight transport demand 

should be better investigated in quantitative analysis, due to its huge impact on the whole 
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system. The dynamics of the market demand in response to product prices or logistic costs 

should be further analyzed, as well as other demand management instruments such as 

logistics collaborations, partnerships, and vertical integration. The economic 

development in globalized markets also changes the patterns of consumption and 

increases e-commerce, which should be closely monitored for proper management of 

environmental effects. 

Unlike the assumption of the proposed quantitative model, the utilization of the vehicle’s 

capacity and other logistics assets can be optimized. The reaction of different companies’ 

levels to emissions mitigation and other policies and how it impacts the use of their fleets 

should be further investigated. Inventory costs and management should be taken into 

account, as they affect the dynamics of logistics operations. Marketing strategies and the 

green image of companies also play a role in this policy measure. Moreover, the energy 

efficiency of different vehicle technologies is subject to improvements and new research 

should take it into account.   

Considering the policies analyzed in our quantitative model, future research should detail 

how they could be implemented, besides their targets and time limits. A choice modeling 

approach could assist by providing insights related to the most influencing parameters of 

stakeholders’ choice decisions regarding the adoption of alternative fuel vehicles and 

transport modes. Still, the temporal factor should be continuously analyzed in future 

studies, as this is an imperative factor to predict the decarbonization dynamics of the 

freight transport system.  
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A. Appendix A – Model equations 

This appendix presents all the equations and their respective units from the proposed 

system dynamics model developed in Chapter 4. 

(001) "% biodiesel in diesel"= 0*TANH (15*policies towards trucks alternative fuels +0)+0.12 - 

Units: Dmnl 

(002) "% Brazilian freight emissions"= Brazilian freight transport emissions 2020/global CO2 

emissions 2020 - Units: Dmnl 

(003) "% budget 1.5° C Brazilian freight"= "CO2 budget 1.5ºC"*"% Brazilian freight emissions" 

- Units: ton 

(004) "% budget 2° C Brazilian freight"= CO2 budget 2ºC*"% Brazilian freight emissions" - 

Units: ton 

(005) "% CNG/biomethane truck"= "CNG/biomethane truck fleet"/total truck fleet -     Units: 

Dmnl 

(006) "% diesel+biodiesel barge"= ("diesel+biodiesel barge fleet"+old barge fleet)/total barge 

fleet - Units: Dmnl 

(007) "% diesel+biodiesel train"= ("diesel+biodiesel train fleet"+total old train fleet)/total train 

fleet - Units: Dmnl     

(008) "% diesel+biodiesel truck"= ("diesel+biodiesel truck fleet"+total old truck fleet)/total truck 

fleet - Units: Dmnl 

(009) "% electric barge"= electric barge fleet/total barge fleet - Units: Dmnl 

(010) "% electric train"= electric train fleet/total train fleet - Units: Dmnl     

(011) "% electric truck"= electric truck fleet/total truck fleet - Units: Dmnl 

(012) "% hydrogen truck"= hydrogen truck fleet/total truck fleet - Units: Dmnl 

(013) average barge age= Time-2005 - Units: Year 

(014) "average train age 1960-1969"= Time-1964 - Units: Year 

(015) "average train age 1970-1979"= Time-1974 - Units: Year 

(016) "average train age 1980-1989"= Time-1984 - Units: Year 

(017) "average train age 1990-1999"= Time-1994 - Units: Year 

(018) "average train age 2000-2009"= Time-2004 - Units: Year 

(019) "average train age 2010-2019"= Time-2004 - Units: Year 

(020) "average train age >1959"= Time-1954 - Units: Year 

(021) "average truck age 1978-1983"= Time-1983 - Units: Year 

(022) "average truck age 1984-1989"= Time-1989 - Units: Year 

(023) "average truck age 1990-1995"= Time-1995 - Units: Year 

(024) "average truck age 1996-2001"= Time-2001 - Units: Year 

(025) "average truck age 2002-2007"= Time-2007 - Units: Year 

(026) "average truck age 2008-2013"= Time-2013 - Units: Year 



 

144 
 

(027) "average truck age 2014-2019"= Time-2019 - Units: Year 

(028) barge diesel consumption= transport performed with diesel barge*diesel barge efficiency     

Units: l 

(029) barge electricity consumption= transport performed with electric barge*electric barge 

efficiency     Units: Wh       

(030) barge fleet from 2020 onwards= INTEG (barge fleet inflow, 0)     Units: veh       

(031) barge fleet inflow= IF THEN ELSE (total barge fleet<ideal barge fleet, (ideal barge fleet-

total barge fleet)/year, 0)     Units: veh/Year       

(032) "barge scrappage rate 0-5"= 1-(1+EXP (0.2037*3-6.9993))^-0.8679     Units: Dmnl       

(033) "barge scrappage rate 11-15"= 1-(1+EXP (0.2037*13-6.9993))^-0.8679     Units: Dmnl       

(034) "barge scrappage rate 16-20"= 1-(1+EXP (0.2037*18-6.9993))^-0.8679     Units: Dmnl       

(035) "barge scrappage rate 21-25"= 1-(1+EXP (0.2037*23-6.9993))^-0.8679     Units: Dmnl       

(036) "barge scrappage rate 26-30"= 1-(1+EXP (0.2037*28-6.9993))^-0.8679     Units: Dmnl       

(037) "barge scrappage rate 6-10"= 1-(1+EXP (0.2037*8-6.9993))^-0.8679     Units: Dmnl       

(038) barges scrappage rate= 1-(1+EXP (0.2037*(average barge age/year)-6.9993))^-0.8679     

Units: Dmnl       

(039) biodiesel barge adoption= barge fleet inflow*"diesel+biodiesel barge share" Units: 

veh/Year       

(040) biodiesel trains adoption= train fleet inflow*"diesel+biodiesel train share"     Units: 

veh/Year       

(041) biodiesel trucks adoption= truck fleet inflow*"diesel+biodiesel truck share"     Units: 

veh/Year       

(042) biomethane truck efficiency= 0.0629     Units: m³/(ton*km)       

(043) CNG 10 to 11= DELAY FIXED (CNG 5 to 6-"scrappage CNG 6-10", 5, 0)     Units: 

veh/Year       

(044) CNG 15 to 16= DELAY FIXED (CNG 10 to 11-"scrappage CNG 11-15", 5, 0)   Units: 

veh/Year       

(045) CNG 20 to 21= DELAY FIXED (CNG 15 to 16-"scrappage CNG 16-20", 5, 0)   Units: 

veh/Year       

(046) CNG 25 to 26= DELAY FIXED (CNG 20 to 21-"scrappage CNG 21-25", 5, 0)   Units: 

veh/Year       

(047) CNG 5 to 6= DELAY FIXED ("CNG/biomethane trucks adoption"-"scrappage CNG 0-5", 

5, 0)     Units: veh/Year       

(048) "CNG TF 0-5 years old"= INTEG ("CNG/biomethane trucks adoption"-CNG 5 to 6-

"scrappage CNG 0-5", 0)     Units: veh       

(049) "CNG TF 11-15 years old"= INTEG (CNG 10 to 11-CNG 15 to 16-"scrappage CNG 11-

15", 0)     Units: veh       

(050) "CNG TF 16-20 years old"= INTEG (CNG 15 to 16-CNG 20 to 21-"scrappage CNG 16-

20", 0)     Units: veh       

(051) "CNG TF 21-25 years old"= INTEG (CNG 20 to 21-CNG 25 to 26-"scrappage CNG 21-

25", 0)     Units: veh       

(052) "CNG TF 26-30 years old"= INTEG (CNG 25 to 26-final scrappage CNG-"scrappage CNG 

26-30", 0)     Units: veh       
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(053) "CNG TF 6-10 years old"= INTEG (CNG 5 to 6-CNG 10 to 11-"scrappage CNG 6-10", 0)     

Units: veh       

(054) "CNG truck efficiency"= 0.0629     Units: m³/(ton*km)       

(055) "CNG/biomethane truck fleet"= "CNG TF 0-5 years old"+"CNG TF 6-10 years old"+"CNG 

TF 11-15 years old"+"CNG TF 16-20 years old"     +"CNG TF 21-25 years old"+"CNG TF 26-

30 years old"     Units: veh       

(056) "CNG/biomethane truck share"= 0*TANH (15*policies towards trucks alternative fuels+0) 

+ 0     Units: Dmnl       

(057) "CNG/biomethane trucks adoption"= truck fleet inflow*"CNG/biomethane truck share"     

Units: veh/Year       

(058) CO2 budget 2ºC= 1.15e+12     Units: ton       

(059) control 2°C= IF THEN ELSE (total freight emissions<"% budget 2° C Brazilian freight", 

0, 1)     Units: Dmnl       

(060) DB 10 to 11= DELAY FIXED (DB 5 to 6-"scrappage DB 6-10", 5, 0)     Units: veh/Year       

(061) DB 15 to 16= DELAY FIXED (DB 10 to 11-"scrappage DB 11-15", 5, 0)     Units: veh/Year       

(062) DB 20 to 21= DELAY FIXED (DB 15 to 16-"scrappage DB 16-20", 5, 0)     Units: veh/Year       

(063) DB 25 to 26= DELAY FIXED (DB 20 to 21-"scrappage DB 21-25", 5, 0)     Units: veh/Year       

(064) DB 5 to 6= DELAY FIXED (biodiesel trucks adoption-"scrappage DB 0-5", 5, 0)     Units: 

veh/Year       

(065) "DBBF 0-5 years old"= INTEG (biodiesel barge adoption-DBBF 5 to 6-"scrappage DBBF 

0-5", 0)     Units: veh       

(066) "diesel+biodiesel TF 26-30 years old"= INTEG (DB 25 to 26-final scrappage DB-

"scrappage DB 26-30", 0)     Units: veh       

(067) "diesel+biodiesel truck share"= 0*TANH (15*policies towards trucks alternative fuels+0) 

+1     Units: Dmnl       

(068) E 25 to 26= DELAY FIXED (E 20 to 21-"scrappage electric 21-25", 5, 0)     Units: veh/Year       

(069) electric truck share= 0*TANH (15*policies towards trucks alternative fuels+0)+0     Units: 

Dmnl       

(070) electric trucks adoption= truck fleet inflow*electric truck share     Units: veh/Year       

(071) "ETF 26-30 years old"= INTEG (E 25 to 26-final scrappage-"scrappage electric 26-30", 0)     

Units: veh       

(072) Brazilian freight transport emissions 2020= 7.97e+07     Units: ton       

(073) "CO2 budget 1.5ºC"= 4e+11     Units: ton       

(074) "control 1.5°C"= IF THEN ELSE (total freight emissions<"% budget 1.5° C Brazilian 

freight", 0, 1)     Units: Dmnl       

(075) DBBF 10 to 11= DELAY FIXED (DBBF 5 to 6-"scrappage DBBF 6-10", 5, 0)     Units: 

veh/Year       

(076) "DBBF 11-15 years old"= INTEG (DBBF 10 to 11-DBBF 15 to 16-"scrappage DBBF 11-

15", 0)     Units: veh       

(077) DBBF 15 to 16= DELAY FIXED (DBBF 10 to 11-"scrappage DBBF 11-15", 5, 0)     Units: 

veh/Year       

(078) "DBBF 16-20 years old"= INTEG (DBBF 15 to 16-DBBF 20 to 21-"scrappage DBBF 16-

20", 0)     Units: veh       
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(079) DBBF 20 to 21= DELAY FIXE (DBBF 15 to 16-"scrappage DBBF 16-20", 5, 0)     Units: 

veh/Year       

(080) "DBBF 21-25 years old"= INTEG (DBBF 20 to 21-DBBF 25 to 26-"scrappage DBBF 21-

25", 0)     Units: veh       

(081) DBBF 25 to 26= DELAY FIXED (DBBF 20 to 21-"scrappage DBBF 21-25", 5, 0)     Units: 

veh/Year       

(082) "DBBF 26-30 years old"= INTEG (DBBF 25 to 26-"scrappage DBBF 26-30", 0)     Units: 

veh       

(083) DBBF 5 to 6= DELAY FIXED (biodiesel barge adoption-"scrappage DBBF 0-5", 5, 0)     

Units: veh/Year       

(084) "DBBF 6-10 years old"= INTEG (DBBF 5 to 6-DBBF 10 to 11-"scrappage DBBF 6-10", 

0)     Units: veh       

(085) "DBTR 0-5 years old"= INTEG (biodiesel trains adoption-DBTR 5 to 6-"scrappage DBTR 

0-5", 0)     Units: veh       

(086) DBTR 10 to 11= DELAY FIXED (DBTR 5 to 6-"scrappage DBTR 6-10", 5, 0)     Units: 

veh/Year       

(087) "DBTR 11-15 years old"= INTEG (DBTR 10 to 11-DBTR 15 to 16-"scrappage DBTR 11-

15", 0)     Units: veh       

(088) DBTR 15 to 16= DELAY FIXED (DBTR 10 to 11-"scrappage DBTR 11-15", 5, 0)     Units: 

veh/Year       

(089) "DBTR 16-20 years old"= INTEG (DBTR 15 to 16-DBTR 20 to 21-"scrappage DBTR 16-

20", 0)     Units: veh       

(090) DBTR 20 to 21= DELAY FIXED (DBTR 15 to 16-"scrappage DBTR 16-20", 5, 0)     Units: 

veh/Year       

(091) "DBTR 21-25 years old"= INTEG (DBTR 20 to 21-DBTR 25 to 26-"scrappage DBTR 21-

25", 0)     Units: veh       

(092)    DBTR 25 to 26= DELAY FIXED (DBTR 20 to 21-"scrappage DBTR 21-25", 5, 0)     

Units: veh/Year       

(093) "DBTR 26-30 years old"= INTEG (DBTR 25 to 26-"scrappage DBTR 26-30", 0)     Units: 

veh       

(094) DBTR 5 to 6= DELAY FIXED (biodiesel trains adoption-"scrappage DBTR 0-5", 5, 0)     

Units: veh/Year       

(095) "DBTR 6-10 years old"= INTEG (DBTR 5 to 6-DBTR 10 to 11-"scrappage DBTR 6-10", 

0)     Units: veh       

(096) diesel barge efficiency= 0.0038     Units: l/(ton*km)       

(097) diesel train efficiency= 0.0047     Units: l/(ton*km)       

(098) "diesel+biodiesel barge fleet"=         "DBBF 0-5 years old"+"DBBF 6-10 years old"+"DBBF 

11-15 years old"+"DBBF 16-20 years old"     +"DBBF 21-25 years old"+"DBBF 26-30 years old"     

Units: veh       

(099) "diesel+biodiesel barge share"= 0*TANH (15*policies towards barges alternative 

fuels+0)+1     Units: Dmnl       

(100)    "diesel+biodiesel TF 0-5 years old"= INTEG (biodiesel trucks adoption-DB 5 to 6-

"scrappage DB 0-5", 0)     Units: veh       
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(101) "diesel+biodiesel TF 11-15 years old"= INTEG (DB 10 to 11-DB 15 to 16-"scrappage DB 

11-15", 0)     Units: veh       

(102) "diesel+biodiesel TF 16-20 years old"= INTEG (DB 15 to 16-DB 20 to 21-"scrappage DB 

16-20", 0)     Units: veh       

(103) "diesel+biodiesel TF 21-25 years old"= INTEG (DB 20 to 21-DB 25 to 26-"scrappage DB 

21-25", 0)     Units: veh       

(104) "diesel+biodiesel TF 6-10 years old"= INTEG (DB 5 to 6-DB 10 to 11-"scrappage DB 6-

10", 0)     Units: veh       

(105) "diesel+biodiesel train fleet"= "DBTR 0-5 years old"+"DBTR 6-10 years old"+"DBTR 11-

15 years old"+"DBTR 16-20 years old"     +"DBTR 21-25 years old"+"DBTR 26-30 years old"     

Units: veh       

(106) "diesel+biodiesel train share"= 0*TANH (15*policies towards trains alternative fuels+0)+1     

Units: Dmnl       

(107) "diesel+biodiesel truck efficiency"= 0.0577     Units: l/(ton*km)       

108) "diesel+biodiesel truck fleet"= "diesel+biodiesel TF 0-5 years old"+"diesel+biodiesel TF 6-

10 years old"+"diesel+biodiesel TF 11-15 years old"+"diesel+biodiesel TF 16-20 years old"     

+"diesel+biodiesel TF 21-25 years old"+"diesel+biodiesel TF 26-30 years old"     Units: veh       

(109) E 10 to 11= DELAY FIXED (E 5 to 6-"scrappage electric 6-10", 5, 0)     Units: veh/Year       

(110) E 15 to 16= DELAY FIXED (E 10 to 11-"scrappage electric 11-15", 5, 0)     Units: veh/Year       

(111) E 20 to 21= DELAY FIXED (E 15 to 16-"scrappage electric 16-20", 5, 0)     Units: veh/Year       

(112) E 5 to 6= DELAY FIXED (electric trucks adoption-"scrappage electric 0-5", 5, 0)     Units: 

veh/Year       

(113) "EBF 0-5 years old"= INTEG (electric barges adoption-EBF 5 to 6-"scrappage electric 

barge 0-5", 0)     Units: veh       

(114) EBF 10 to 11= DELAY FIXED (EBF 5 to 6-"scrappage electric barge 6-10", 5, 0)     Units: 

veh/Year       

(115) EBF 15 to 16= DELAY FIXED (EBF 10 to 11-"scrappage electric barge 11-15", 5, 0)     

Units: veh/Year       

(116) EBF 20 to 21= DELAY FIXED (EBF 15 to 16-"scrappage electric barge 16-20", 5, 0)     

Units: veh/Year       

(117) "EBF 21-25 years old"= INTEG (EBF 20 to 21-EBF 25 to 26-"scrappage electric barge 21-

25",             0)     Units: veh       

(118) EBF 25 to 26= DELAY FIXED (EBF 20 to 21-"scrappage electric barge 21-25", 5, 0)     

Units: veh/Year       

(119) "EBF 26-30 years old"= INTEG (EBF 25 to 26-"scrappage electric barge 26-30", 0)     Units: 

veh       

(120) EBF 5 to 6= DELAY FIXED (electric barges adoption-"scrappage electric barge 0-5", 5, 

0)     Units: veh/Year       

(121) "EBF 6-10 years old"= INTEG (EBF 5 to 6-EBF 10 to 11-"scrappage electric barge 6-10", 

0)     Units: veh       

(122) "EBF 11-15 years old"= INTEG (EBF 10 to 11-EBF 15 to 16-"scrappage electric barge 11-

15", 0)     Units: veh       

(123) "EBF 16-20 years old"= INTEG (EBF 15 to 16-EBF 20 to 21-"scrappage electric barge 16-

20",             0)     Units: veh       
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(124) electric barge efficiency= 28     Units: Wh/(ton*km)       

(125) electric barge fleet= "EBF 0-5 years old"+"EBF 6-10 years old"+"EBF 11-15 years 

old"+"EBF 16-20 years old"+"EBF 21-25 years old"+"EBF 26-30 years old"     Units: veh       

(126) electric barge share= 0*TANH (15*policies towards barges alternative fuels+0)+0  Units: 

Dmnl       

(127) electric barges adoption= barge fleet inflow*electric barge share     Units: veh/Year       

(128) electric train efficiency= 53.1     Units: Wh/(ton*km)       

(129) electric train fleet= "ETR 0-5 years old"+"ETR 6-10 years old"+"ETR 11-15 years 

old"+"ETR 16-20 years old" +"ETR 21-25 years old"+"ETR 26-30 years old"     Units: veh       

(130) electric train share= 0*TANH (15*policies towards trains alternative fuels+0)+0     Units: 

Dmnl       

(131) electric trains adoption= train fleet inflow*electric train share     Units: veh/Year       

(132) electric truck efficiency=1.35     Units: kWh/(ton*km)       

(133) electric truck fleet= "ETF 0-5 years old"+"ETF 6-10 years old"+"ETF 11-15 years 

old"+"ETF 16-20 years old"     +"ETF 21-25 years old"+"ETF 26-30 years old"     Units: veh       

(134) "ETF 0-5 years old"= INTEG (electric trucks adoption-E 5 to 6-"scrappage electric 0-5", 0)     

Units: veh       

(135) "ETF 11-15 years old"= INTEG (E 10 to 11-E 15 to 16-"scrappage electric 11-15", 0)    

Units: veh       

(136) "ETF 16-20 years old"= INTEG (E 15 to 16-E 20 to 21-"scrappage electric 16-20", 0)     

Units: veh       

(137) "ETF 21-25 years old"= INTEG (E 20 to 21-E 25 to 26-"scrappage electric 21-25", 0)     

Units: veh       

(138) "ETF 6-10 years old"= INTEG (E 5 to 6-E 10 to 11-"scrappage electric 6-10",   0)     Units: 

veh       

(139) "ETR 0-5 years old"= INTEG (electric trains adoption-ETR 5 to 6-"scrappage electric train 

0-5", 0)     Units: veh       

(140) ETR 10 to 11= DELAY FIXED (ETR 5 to 6-"scrappage electric train 6-10", 5, 0)     Units: 

veh/Year       

(141) "ETR 11-15 years old"= INTEG (ETR 10 to 11-ETR 15 to 16-"scrappage electric train 11-

15", 0)     Units: veh       

(142) ETR 15 to 16= DELAY FIXED (ETR 10 to 11-"scrappage electric train 11-15", 5, 0)     

Units: veh/Year       

(143) "ETR 16-20 years old"= INTEG (ETR 15 to 16-ETR 20 to 21-"scrappage electric train 16-

20", 0)     Units: veh       

(144) ETR 20 to 21= DELAY FIXED (ETR 15 to 16-"scrappage electric train 16-20", 5, 0)     

Units: veh/Year       

(145) "ETR 21-25 years old"= INTEG (ETR 20 to 21-ETR 25 to 26-"scrappage electric train 21-

25", 0)     Units: veh       

(146) ETR 25 to 26= DELAY FIXED (ETR 20 to 21-"scrappage electric train 21-25", 5, 0)     

Units: veh/Year       

(147) "ETR 26-30 years old"= INTEG (ETR 25 to 26-"scrappage electric train 26-30", 0)     Units: 

veh       
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(148) ETR 5 to 6= DELAY FIXED (electric trains adoption-"scrappage electric train 0-5", 5, 0)     

Units: veh/Year       

(149) "ETR 6-10 years old"= INTEG (ETR 5 to 6-ETR 10 to 11-"scrappage electric train 6-10", 

0)     Units: veh       

(150) final scrappage= DELAY FIXED (E 25 to 26-"scrappage electric 26-30", 5, 0)     Units: 

veh/Year       

(151) final scrappage CNG= DELAY FIXED (CNG 25 to 26-"scrappage CNG 26-30", 5, 0)     

Units: veh/Year       

(152) final scrappage DB= DELAY FIXED (DB 25 to 26-"scrappage DB 26-30", 5, 0)     Units: 

veh/Year       

(153) final scrappage HTF= DELAY FIXED (HTF 25 to 26-"scrappage HTF 26-30", 5, 0)     

Units: veh/Year       

(154) FINAL TIME= 2050     Units: Year     The final time for the simulation.   

(155) global CO2 emissions 2020= 3.481e+10     Units: ton       

(156) HTF 10 to 11= DELAY FIXED (HTF 5 to 6-"scrappage HTF 6-10", 5, 0)     Units: veh/Year       

(157) HTF 15 to 16= DELAY FIXED (HTF 10 to 11-"scrappage HTF 11-15", 5, 0)     Units: 

veh/Year       

(158) HTF 20 to 21= DELAY FIXED (HTF 15 to 16-"scrappage HTF 16-20", 5, 0)     Units: 

veh/Year       

(159) HTF 25 to 26= DELAY FIXED (HTF 20 to 21-"scrappage HTF 21-25", 5, 0)     Units: 

veh/Year       

(160) HTF 5 to 6= DELAY FIXED (hydrogen trucks adoption-"scrappage HTF 0-5", 5, 0)     

Units: veh/Year       

(161) "hydrogen TF 0-5 years old"= INTEG (hydrogen trucks adoption-HTF 5 to 6-"scrappage 

HTF 0-5", 0)     Units: veh       

(162) "hydrogen TF 11-15 years old"= INTEG (HTF 10 to 11-HTF 15 to 16-"scrappage HTF 11-

15", 0)     Units: veh       

(163) "hydrogen TF 16-20 years old"= INTEG (HTF 15 to 16-HTF 20 to 21-"scrappage HTF 16-

20", 0)     Units: veh       

(164) "hydrogen TF 21-25 years old"= INTEG (HTF 20 to 21-HTF 25 to 26-"scrappage HTF 21-

25", 0)     Units: veh       

(165) "hydrogen TF 26-30 years old"= INTEG (HTF 25 to 26-final scrappage HTF-"scrappage 

HTF 26-30", 0)     Units: veh       

(166) "hydrogen TF 6-10 years old"= INTEG (HTF 5 to 6-HTF 10 to 11-"scrappage HTF 6-10", 

0)     Units: veh       

(167) hydrogen truck efficiency= 0.1     Units: kg/(ton*km)       

(168) hydrogen truck fleet= "hydrogen TF 0-5 years old"+"hydrogen TF 6-10 years 

old"+"hydrogen TF 11-15 years old"     +"hydrogen TF 16-20 years old"+"hydrogen TF 21-25 

years old"+"hydrogen TF 26-30 years old"     Units: veh       

(169) hydrogen truck share= 0*TANH (15*policies towards trucks alternative fuels+0)+0   Units: 

Dmnl       

(170) hydrogen trucks adoption= truck fleet inflow*hydrogen truck share     Units: veh/Year       

(171) ideal barge fleet= waterway transport activity/"tkm/barge"     Units: veh       
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(172) ideal train fleet= rail transport activity/"tkm/train"     Units: veh       

(173) ideal truck fleet= road transport activity/"tkm/truck"     Units: veh       

(174) initial freight transport activity= 1.745e+12     Units: ton*km       

(175) INITIAL TIME= 2020     Units: Year     The initial time for the simulation.   

(176) old barge fleet= INTEG (-old barge scrappage rate, 2709)     Units: veh       

(177) old barge scrappage rate= old barge fleet*barges scrappage rate/year     Units: veh/Year       

(178) policies towards alternative modes= RAMP(0.0666667, 2020, 2035)     Units: Dmnl       

(179) policies towards barges alternative fuels= RAMP (0.033, 2020, 2050)     Units: Dmnl       

(180) policies towards speeding up fleet renewal= RAMP (0.2, 2020, 2025)     Units: Dmnl       

(181) policies towards trains alternative fuels= RAMP (0.033, 2020, 2050)     Units: Dmnl       

(182) policies towards trucks alternative fuels= RAMP (0.0666667, 2020, 2035)     Units: Dmnl       

(183) rail CO2 emissions= INTEG (rail diesel emissions+rail electricity emissions), 7e+06)     

Units: ton       

(184) rail diesel emissions= train diesel consumption*"rail diesel KgCO2/L"*"ton/kg"/year     

Units: ton/Year       

(185) "rail diesel KgCO2/L"= 2.697     Units: kg/l       

(186) rail electricity emissions= train electricity consumption*"rail electricity 

KgCO2/Wh"*"ton/kg"/year     Units: ton/Year       

(187) "rail electricity KgCO2/Wh"= 0     Units: kg/Wh       

(188) rail share= 0*TANH (15*policies towards alternative modes+0)+0.22     Units: Dmnl       

(189) rail transport activity= yearly freight transport activity*rail share)     Units: ton*km       

(190) "road biodiesel KgCO2/L"= 2.431     Units: kg/l       

(191) road biomethane CO2 emission factor= 0.24     Units: kg/m³       

(192) road biomethane emissions= truck biomethane consumption*road biomethane CO2 

emission factor*"ton/kg"/year     Units: ton/Year       

(193) "road CNG CO2 emission factor"= 2.101     Units: kg/m³       

194)    "road CNG emissions"=         "truck CNG consumption"*"road CNG CO2 emission 

factor"*"ton/kg"/year     Units: ton/Year       

(195) road CO2 emissions= INTEG (road hydrogen emissions+road biomethane emissions+"road 

CNG emissions" +"road diesel+biodiesel emissions"+road electricity emissions),             6.72e+07)     

Units: ton       

(196) "road diesel KgCO2/L"= 2.697     Units: kg/l       

(197) "road diesel+biodiesel CO2 emission factor"= "road biodiesel KgCO2/L"*"% biodiesel in 

diesel")+"road diesel KgCO2/L"* (1-"% biodiesel in diesel")     Units: kg/l       

(198) "road diesel+biodiesel emissions"= "truck diesel+biodiesel consumption"*"road 

diesel+biodiesel CO2 emission factor" *"ton/kg"/year     Units: ton/Year       

(199) road electricity CO2 emission factor= 0     Units: kg/kWh       

(200) road electricity emissions= truck electricity consumption*road electricity CO2 emission 

factor*"ton/kg"     /year     Units: ton/Year       

(201) road hydrogen CO2 emission factor=         0     Units: kg/kg       
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(202) road hydrogen emissions= truck hydrogen consumption*road hydrogen CO2 emission 

factor*"ton/kg"/year     Units: ton/Year       

(203) road share= 0*TANH (15*policies towards alternative modes+0)+0.63     Units: Dmnl       

(204) road transport activity= (yearly freight transport activity*road share)     Units: ton*km       

(205) SAVEPER  = 1     Units: Year [0,?]     The frequency with which output is stored.   

(206) "scrappage CNG 0-5"= "CNG/biomethane trucks adoption"*"truck scrappage rate 0-5"     

Units: veh/Year       

(207) "scrappage CNG 11-15"= CNG 10 to 11*"truck scrappage rate 11-15"     Units: veh/Year       

(208) "scrappage CNG 16-20"= CNG 15 to 16*"truck scrappage rate 16-20"     Units: veh/Year       

(209) "scrappage CNG 21-25"= CNG 20 to 21*"truck scrappage rate 21-25"     Units: veh/Year       

(210) "scrappage CNG 26-30"= CNG 25 to 26*"truck scrappage rate 26-30"     Units: veh/Year       

(211) "scrappage CNG 6-10"= CNG 5 to 6*"truck scrappage rate 6-10"     Units: veh/Year       

(212) "scrappage DB 0-5"= biodiesel trucks adoption*"truck scrappage rate 0-5"     Units: 

veh/Year       

(213) "scrappage DB 11-15"= DB 10 to 11*"truck scrappage rate 11-15"     Units: veh/Year       

(214) "scrappage DB 16-20"= DB 15 to 16*"truck scrappage rate 16-20"     Units: veh/Year       

(215) "scrappage DB 21-25"= DB 20 to 21*"truck scrappage rate 21-25"     Units: veh/Year       

(216) "scrappage DB 26-30"= DB 25 to 26*"truck scrappage rate 26-30"     Units: veh/Year       

(217) "scrappage DB 6-10"= DB 5 to 6*"truck scrappage rate 6-10"     Units: veh/Year       

(218) "scrappage DBBF 0-5"= biodiesel barge adoption*"barge scrappage rate 0-5"     Units: 

veh/Year       

(219) "scrappage DBBF 11-15"= DBBF 10 to 11*"barge scrappage rate 11-15"     Units: veh/Year       

(220) "scrappage DBBF 16-20"= DBBF 15 to 16*"barge scrappage rate 16-20"     Units: veh/Year       

(221) "scrappage DBBF 21-25"= DBBF 20 to 21*"barge scrappage rate 21-25"     Units: veh/Year       

(222) "scrappage DBBF 26-30"= DBBF 25 to 26*"barge scrappage rate 26-30"     Units: veh/Year       

(223) "scrappage DBBF 6-10"= DBBF 5 to 6*"barge scrappage rate 6-10"     Units: veh/Year       

(224) "scrappage DBTR 0-5"= biodiesel trains adoption*"train scrappage rate 0-5"     Units: 

veh/Year       

(225) "scrappage DBTR 11-15"= DBTR 10 to 11*"train scrappage rate 11-15"     Units: veh/Year       

(226) "scrappage DBTR 16-20"= DBTR 15 to 16*"train scrappage rate 16-20"     Units: veh/Year       

(227) "scrappage DBTR 21-25"= DBTR 20 to 21*"train scrappage rate 21-25"     Units: veh/Year       

(228) "scrappage DBTR 26-30"= DBTR 25 to 26*"train scrappage rate 26-30"     Units: veh/Year       

(229) "scrappage DBTR 6-10"= DBTR 5 to 6*"train scrappage rate 6-10"     Units: veh/Year       

(230) "scrappage electric 0-5"= electric trucks adoption*"truck scrappage rate 0-5"     Units: 

veh/Year       

(231) "scrappage electric 11-15"= E 10 to 11*"truck scrappage rate 11-15"     Units: veh/Year       

(232) "scrappage electric 16-20"= E 15 to 16*"truck scrappage rate 16-20"     Units: veh/Year       

(233) "scrappage electric 21-25"= E 20 to 21*"truck scrappage rate 21-25"     Units: veh/Year       

(234) "scrappage electric 26-30"= E 25 to 26*"truck scrappage rate 26-30"     Units: veh/Year       
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(235) "scrappage electric 6-10"= E 5 to 6*"truck scrappage rate 6-10"     Units: veh/Year       

(236) "scrappage electric barge 0-5"= electric barges adoption*"barge scrappage rate 0-5"     

Units: veh/Year       

(237) "scrappage electric barge 11-15"= EBF 10 to 11*"barge scrappage rate 11-15"     Units: 

veh/Year       

(238) "scrappage electric barge 16-20"= EBF 15 to 16*"barge scrappage rate 16-20"     Units: 

veh/Year       

(239) "scrappage electric barge 21-25"= EBF 20 to 21*"barge scrappage rate 21-25"     Units: 

veh/Year       

(240) "scrappage electric barge 26-30"= EBF 25 to 26*"barge scrappage rate 26-30"     Units: 

veh/Year       

(241) "scrappage electric barge 6-10"= EBF 5 to 6*"barge scrappage rate 6-10"     Units: veh/Year       

(242) "scrappage electric train 0-5"= electric trains adoption*"train scrappage rate 0-5"     Units: 

veh/Year       

(243) "scrappage electric train 11-15"= ETR 10 to 11*"train scrappage rate 11-15"     Units: 

veh/Year       

(244) "scrappage electric train 16-20"= ETR 15 to 16*"train scrappage rate 16-20"     Units: 

veh/Year       

(245) "scrappage electric train 21-25"= ETR 20 to 21*"train scrappage rate 21-25"     Units: 

veh/Year       

(246) "scrappage electric train 26-30"= ETR 25 to 26*"train scrappage rate 26-30"     Units: 

veh/Year       

(247) "scrappage electric train 6-10"= ETR 5 to 6*"train scrappage rate 6-10"     Units: veh/Year       

(248) "scrappage HTF 0-5"= hydrogen trucks adoption*"truck scrappage rate 0-5"     Units: 

veh/Year       

(249) "scrappage HTF 11-15"= HTF 10 to 11*"truck scrappage rate 11-15"     Units: veh/Year       

(250) "scrappage HTF 16-20"= HTF 15 to 16*"truck scrappage rate 16-20"     Units: veh/Year       

(251) "scrappage HTF 21-25"= HTF 20 to 21*"truck scrappage rate 21-25"     Units: veh/Year       

(252) "scrappage HTF 26-30"= HTF 25 to 26*"truck scrappage rate 26-30"     Units: veh/Year       

(253) "scrappage HTF 6-10"= HTF 5 to 6*"truck scrappage rate 6-10"     Units: veh/Year       

(254) "scrappage rate 1960-1969"= "train fleet 1960-1969"*"trains scrappage rate 1960-

1969"/year     Units: veh/Year       

(255) "scrappage rate 1970-1979"= "train fleet 1970-1979"*"trains scrappage rate 1970-

1979"/year     Units: veh/Year       

(256) "scrappage rate 1978-1983"= IF THEN ELSE ("speed up fleet renewal - policy control"=0, 

"truck fleet 1978-1983" *"trucks scrappage rate 1978-1983"/year, (1+policies towards speeding 

up fleet renewal)*"truck fleet 1978-1983"* "trucks scrappage rate 1978-1983"/year)     Units: 

veh/Year       

(257) "scrappage rate 1980-1989"= "train fleet 1980-1989"*"trains scrappage rate 1980-

1989"/year     Units: veh/Year       

(258) "scrappage rate 1984-1989"= IF THEN ELSE ("speed up fleet renewal - policy control"=0, 

"truck fleet 1984-1989"*"trucks scrappage rate 1984-1989"/year, (1+policies towards speeding 

up fleet renewal)*"truck fleet 1984-1989"*"trucks scrappage rate 1984-1989"/year)     Units: 

veh/Year       
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(259) "scrappage rate 1990-1995"= IF THEN ELSE ("speed up fleet renewal - policy control"=0, 

"truck fleet 1990-1995" *"trucks scrappage rate 1990-1995"/year, (1+policies towards speeding 

up fleet renewal)*"truck fleet 1990-1995"*     "trucks scrappage rate 1990-1995"/year)     Units: 

veh/Year       

(260) "scrappage rate 1990-1999"= "train fleet 1990-1999"*"trains scrappage rate 1990-

1999"/year     Units: veh/Year       

(261) "scrappage rate 1996-2001"= IF THEN ELSE ("speed up fleet renewal - policy control"=0, 

"truck fleet 1996-2001" * "trucks scrappage rate 1996-2001"/year, (1+policies towards speeding 

up fleet renewal     )*"truck fleet 1996-2001"*"trucks scrappage rate 1996-2001"/year)     Units: 

veh/Year       

(262) "scrappage rate 2000-2009"= "train fleet 2000-2009"*"trains scrappage rate 2000-

2009"/year     Units: veh/Year       

(263) "scrappage rate 2002-2007"= IF THEN ELSE ("speed up fleet renewal - policy control"=0, 

"truck fleet 2002-2007" *"trucks scrappage rate 2002-2007"/year, (1+policies towards speeding 

up fleet renewal)*"truck fleet 2002-2007"* "trucks scrappage rate 2002-2007"/year)     Units: 

veh/Year       

(264) "scrappage rate 2008-2013"= IF THEN ELSE ("speed up fleet renewal - policy control"=0, 

"truck fleet 2008-2013"*"trucks scrappage rate 2008-2013"/year, (1+policies towards speeding 

up fleet renewal)*"truck fleet 2008-2013"*"trucks scrappage rate 2008-2013"/year)     Units: 

veh/Year       

(265) "scrappage rate 2010-2019"= "train fleet 2010-2019"*"trains scrappage rate 2010-

2019"/year     Units: veh/Year       

(266) "scrappage rate 2014-2019"= IF THEN ELSE ("speed up fleet renewal - policy control"=0, 

"truck fleet 2014-2019"     *"trucks scrappage rate 2014-2019"/year, (1+policies towards speeding 

up fleet renewal)*"truck fleet 2014-2019"*"trucks scrappage rate 2014-2019"/year)     Units: 

veh/Year       

(267) "scrappage rate >1959"= "truck fleet >1960"*"trains scrappage rate >1959"/year     Units: 

veh/Year       

(268) "speed up fleet renewal - policy control"= 1     Units: Dmnl       

(269) TIME STEP  = 0.125     Units: Year [0,?]     The time step for the simulation.   

(270) "tkm/barge"= 1.13787e+08     Units: (ton*km)/veh       

(271) "tkm/train"= 1.03586e+08     Units: (ton*km)/veh       

(272) "tkm/truck"= 504249     Units: (ton*km)/veh       

(273) "ton/kg"= 1/1000     Units: ton/kg       

(274) total barge fleet= "diesel+biodiesel barge fleet"+electric barge fleet+old barge fleet     Units: 

veh       

(275) total freight emissions= rail CO2 emissions+road CO2 emissions+waterway CO2 emissions     

Units: ton       

(276) total old train fleet= "truck fleet >1960"+"train fleet 1960-1969"+"train fleet 1970-

1979"+"train fleet 1980-1989"     +"train fleet 1990-1999"+"train fleet 2000-2009"+"train fleet 

2010-2019"     Units: veh       

(277) total old truck fleet= "truck fleet 1978-1983"+"truck fleet 1984-1989"+"truck fleet 1990-

1995"+"truck fleet 1996-2001" +"truck fleet 2002-2007" +"truck fleet 2008-2013"+"truck fleet 

2014-2019"     Units: veh       

(278) total train fleet= "diesel+biodiesel train fleet"+electric train fleet+total old train fleet     

Units: veh       
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(279) total truck fleet= total old truck fleet+"diesel+biodiesel truck fleet"+"CNG/biomethane 

truck fleet" +electric truck fleet+hydrogen truck fleet     Units: veh       

(280) train diesel consumption= transport performed with diesel train*diesel train efficiency  

Units: l       

(281) train electricity consumption= transport performed with electric train*electric train 

efficiency     Units: Wh       

(282) "train fleet 1960-1969"= INTEG (-"scrappage rate 1960-1969", 284)     Units: veh       

(283) "train fleet 1970-1979"= INTEG (-"scrappage rate 1970-1979", 704)     Units: veh       

(284) "train fleet 1980-1989"= INTEG (-"scrappage rate 1980-1989", 721)     Units: veh       

(285) "train fleet 1990-1999"= INTEG (-"scrappage rate 1990-1999", 181)     Units: veh       

(286) "train fleet 2000-2009"= INTEG (-"scrappage rate 2000-2009", 462)     Units: veh       

(287) "train fleet 2010-2019"= INTEG (-"scrappage rate 2010-2019", 425)     Units: veh       

(288) train fleet from 2020 onwards= INTEG (train fleet inflow, 0)     Units: veh       

(289) train fleet inflow= IF THEN ELSE (total train fleet<ideal train fleet, ideal train fleet-total 

train fleet)/year, 0)     Units: veh/Year       

(290) "train scrappage rate 0-5"= 1- (EXP (25.4501-3)/7.97197)+EXP (2*25.4501-

3)/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-3)/7.97197))     Units: Dmnl       

(291) "train scrappage rate 11-15"= 1- (EXP(25.4501-13)/7.97197)+EXP(2*25.4501-

13)/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-13)/7.97197))     Units: Dmnl       

(292) "train scrappage rate 16-20"= 1- (EXP(25.4501-18)/7.97197)+EXP(2*25.4501-

18)/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-18)/7.97197))     Units: Dmnl       

(293) "train scrappage rate 21-25"= 1- (EXP(25.4501-23)/7.97197)+EXP(2*25.4501-

23)/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-23)/7.97197))     Units: Dmnl       

(294) "train scrappage rate 26-30"= 1- (EXP(25.4501-28)/7.97197)+EXP(2*25.4501-

28)/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-28)/7.97197))     Units: Dmnl       

(295) "train scrappage rate 6-10"= 1- (EXP(25.4501-8)/7.97197)+EXP(2*25.4501-

8)/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-8)/7.97197))     Units: Dmnl       

(296) "trains scrappage rate 1960-1969"= 1- (EXP(25.4501-("average train age 1960-

1969"/year))/7.97197)+EXP(2*25.4501-"average train age 1960-

1969"/year))/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-("average train age 1960-

1969"/year))/7.97197))     Units: Dmnl       

(297) "trains scrappage rate 1970-1979"= 1-(EXP(25.4501-("average train age 1970-

1979"/year))/7.97197)+EXP(2*25.4501- ("average train age 1970-

1979"/year))/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-("average train age 1970-

1979"/year))/7.97197))     Units: Dmnl       

(298) "trains scrappage rate 1980-1989"= 1- (EXP(25.4501-("average train age 1980-

1989"/year))/7.97197)+EXP(2*25.4501- ("average train age 1980-

1989"/year))/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-("average train age 1980-

1989"/year))/7.97197))     Units: Dmnl       

(299) "trains scrappage rate 1990-1999"= 1- (EXP(25.4501-("average train age 1990-

1999"/year))/7.97197)+EXP(2*25.4501-("average train age 1990-

1999"/year))/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-("average train age 1990-

1999"/year))/7.97197))     Units: Dmnl       

(300) "trains scrappage rate 2000-2009"= 1- (EXP(25.4501-("average train age 2000-

2009"/year))/7.97197)+EXP(2*25.4501-"average train age 2000-
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2009"/year))/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-("average train age 2000-

2009"/year))/7.97197))     Units: Dmnl       

(301) "trains scrappage rate 2010-2019"= 1- (EXP(25.4501-("average train age 2010-

2019"/year))/7.97197)+EXP(2*25.4501-("average train age 2010-

2019"/year))/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-("average train age 2010-

2019"/year))/7.97197))     Units: Dmnl       

(302) "trains scrappage rate >1959"= 1-(EXP(25.4501-("average train age 

>1959"/year))/7.97197)+EXP(2*25.4501-("average train age >1959"/year)) 

/7.97197))/(EXP(25.4501/7.97197)+EXP(2*25.4501-("average train age >1959"/year))/ 

7.97197))     Units: Dmnl       

(303) "transport performed with CNG/biomethane truck"= road transport activity*"% 

CNG/biomethane truck"     Units: ton*km       

(304) transport performed with diesel barge= waterway transport activity*"% diesel+biodiesel 

barge"     Units: ton*km       

(305) transport performed with diesel train= rail transport activity*"% diesel+biodiesel train"     

Units: ton*km       

(306) "transport performed with diesel+biodiesel truck"= road transport activity*"% 

diesel+biodiesel truck"     Units: ton*km       

(307) transport performed with electric barge= waterway transport activity*"% electric barge"     

Units: ton*km       

(308) transport performed with electric train= rail transport activity*"% electric train"     Units: 

ton*km       

(309) transport performed with electric truck= road transport activity*"% electric truck"     Units: 

ton*km       

(310) transport performed with hydrogen truck= road transport activity*"% hydrogen truck"     

Units: ton*km       

(311) truck biomethane consumption= "transport performed with CNG/biomethane 

truck"*biomethane truck efficiency*0.3     Units: m³       

(312) "truck CNG consumption"= "transport performed with CNG/biomethane truck"*"CNG 

truck efficiency"     *0.7     Units: m³       

(313) "truck diesel+biodiesel consumption"= "transport performed with diesel+biodiesel 

truck"*"diesel+biodiesel truck efficiency"     Units: l       

(314) truck electricity consumption= transport performed with electric truck*electric truck 

efficiency     Units: kWh       

(315) "truck fleet 1978-1983"= INTEG (-"scrappage rate 1978-1983", 486)     Units: veh       

(316) "truck fleet 1984-1989"= INTEG (-"scrappage rate 1984-1989", 4869)     Units: veh       

(317) "truck fleet 1990-1995"= INTEG (-"scrappage rate 1990-1995", 41784)     Units: veh       

(318) "truck fleet 1996-2001"= INTEG (-"scrappage rate 1996-2001", 217737)     Units: veh       

(319) "truck fleet 2002-2007"= INTEG (-"scrappage rate 2002-2007", 412363)     Units: veh       

(320) "truck fleet 2008-2013"= INTEG (-"scrappage rate 2008-2013", 770755)     Units: veh       

(321) "truck fleet 2014-2019"= INTEG (-"scrappage rate 2014-2019", 453988)     Units: veh       

(322) "truck fleet >1960"= INTEG (-"scrappage rate >1959", 171)     Units: veh       

(323) truck fleet inflow= IF THEN ELSE (total truck fleet<ideal truck fleet, (ideal truck fleet-

total truck fleet)/year, 0)     Units: veh/Year       
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(324) truck hydrogen consumption= transport performed with hydrogen truck*hydrogen truck 

efficiency     Units: kg       

(325) truck sale from 2020 onwards= INTEG (truck fleet inflow, 0)     Units: veh       

(326) "truck scrappage rate 0-5"= 1- (1/(1+EXP(0.1*(3-17)))+1/(1+EXP(0.1*(3+17))))   Units: 

Dmnl       

(327) "truck scrappage rate 11-15"= 1- (1/(1+EXP(0.1*(13-17)))+1/(1+EXP(0.1*(13+17))))  

Units: Dmnl       

(328) "truck scrappage rate 16-20"= 1-(1/(1+EXP(0.1*(18-17)))+1/(1+EXP(0.1*(18+17))))     

Units: Dmnl       

(329) "truck scrappage rate 21-25"= 1-(1/(1+EXP(0.1*(23-17)))+1/(1+EXP(0.1*(23+17))))     

Units: Dmnl       

(330) "truck scrappage rate 26-30"= 1-(1/(1+EXP(0.1*(28-17)))+1/(1+EXP(0.1*(28+17))))     

Units: Dmnl       

(331) "truck scrappage rate 6-10"= 1- (1/(1+EXP(0.1*(8-17)))+1/(1+EXP(0.1*(8+17))))     Units: 

Dmnl       

(332) "trucks scrappage rate 1978-1983"= 1- (1/(1+EXP(0.1*("average truck age 1978-

1983"/year-17)))+1/(1+EXP(0.1*("average truck age 1978-1983"/year+17))))     Units: Dmnl       

(333) "trucks scrappage rate 1984-1989"= 1-(1/(1+EXP(0.1*("average truck age 1984-

1989"/year-17)))+1/(1+EXP(0.1*("average truck age 1984-1989"/year+17))))     Units: Dmnl       

(334) "trucks scrappage rate 1990-1995"= 1-(1/(1+EXP(0.1*("average truck age 1990-

1995"/year-17)))+1/(1+EXP(0.1*("average truck age 1990-1995"/year+17))))     Units: Dmnl       

(335) "trucks scrappage rate 1996-2001"= 1-(1/(1+EXP(0.1*("average truck age 1996-

2001"/year-17)))+1/(1+EXP(0.1*("average truck age 1996-2001"/year+17))))     Units: Dmnl       

(336) "trucks scrappage rate 2002-2007"= 1-(1/(1+EXP(0.1*("average truck age 2002-

2007"/year-17)))+1/(1+EXP(0.1*("average truck age 2002-2007"/year+17))))     Units: Dmnl       

(337) "trucks scrappage rate 2008-2013"= 1-(1/(1+EXP(0.1*("average truck age 2008-

2013"/year-17)))+1/(1+EXP(0.1*("average truck age 2008-2013"/year+17))))     Units: Dmnl       

(338) "trucks scrappage rate 2014-2019"= 1-(1/(1+EXP(0.1*("average truck age 2014-

2019"/year-17)))+1/(1+EXP(0.1*("average truck age 2014-2019"/year+17))))     Units: Dmnl       

(339) waterway CO2 emissions= INTEG(waterway diesel emissions+waterway electricity 

emissions), 5.5e+06)     Units: ton       

(340) waterway diesel emissions= barge diesel consumption*"waterway diesel 

KgCO2/L"*"ton/kg"/year     Units: ton/Year       

(341) "waterway diesel KgCO2/L"= 2.697     Units: kg/l       

(342) waterway electricity emissions= barge electricity consumption*"waterway electricity 

KgCO2/Wh"*"ton/kg"/year     Units: ton/Year       

(343) "waterway electricity KgCO2/Wh"= 0     Units: kg/Wh       

(344) waterway share= 0*TANH (15*policies towards alternative modes+0)+0.15     Units: Dmnl       

(345) waterway transport activity= (yearly freight transport activity*waterway share) Units: 

ton*km       

(346) year= 1     Units: Year       

(347) yearly freight transport activity= INTEG (yearly freight transport activity inflow, initial 

freight transport activity) Units: ton*km       
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(348) yearly freight transport activity change= 0.0343     Units: 1/Year       

(349) yearly freight transport activity inflow= yearly freight transport activity*yearly freight 

transport activity change     Units: ton*km/Year 
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B. Appendix B – Policies equations 

This appendix presents the policy equations used for each scenario simulation in the model developed in Chapter 4. Table B.1 shows the 

model equations for policies toward alternative modes; Table B.2 presents the equations for policies toward alternative fuels; and Table B.3 

presents the equations for policies toward increasing the percentage of biodiesel in the diesel blend.  

Table B.1 – Equations for modal share and policies toward alternative modes*. 
Modes BAU Setup 1 Setup 2 Setup 3 

Roadway 0*Tanh(15x+0)+0.63 -0.04*Tanh(15x-7.5)+ 0.59 -0.12*Tanh(15x-7.5)+0.51 -0.16* Tanh(15x-7.5)+0.48 

Railway 0*Tanh(15x+0)+0.22 0.05*Tanh(15x-7.5)+0.26 0.10*Tanh(15x-7.5)+0.32 0.13* Tanh(15x-7.5)+0.34 

Waterway 0*Tanh(15x+0)+0.15 -0.01*Tanh(15x-7.5)+0.14 0.01* Tanh(15x-7.5)+0.16 0.02* Tanh(15x-7.5)+0.17 

*where x in the equations represents the variable “policies toward alternative modes”. 

 

Table B.2 – Equations for fuel share and policies toward alternative fuels*. 
Modes Fuels BAU Setup 1 Setup 2 Setup 3 

Roadway 

Diesel/biodiesel 0*Tanh(15x+0)+1 -0.07*Tanh(15x-7.5)+0.93 -0.16*Tanh(15x-7.5)+0.84 -0.5*Tanh(15x-7.5)+0.5 

Natural 

gas/biomethane 
0*Tanh (15x+0)+0 0.035*Tanh(15x-7.5)+0.035 0.05*Tanh(15x-7.5)+0.05 0.25*Tanh(15x-7.5)+0.25 

Electricity 0*Tanh (15x+0)+0 0.035*Tanh(15x-7.5)+0.035 0.075*Tanh(15x-7.5)+0.075 0.2*Tanh(15x-7.5)+0.2 

Hydrogen 0*Tanh (15x+0)+0 0*Tanh (15x+0)+0 0.035*Tanh(15x-7.5)+0.035 0.05*Tanh(15x-7.5)+0.05 

Railway and Waterway Diesel 0*Tanh(15x+0)+1 0*Tanh(15x+0)+1 -0.25*Tanh (15x-7.5)+0.75 -0.5*Tanh(15x-7.5)+0.5 

Electricity 0*Tanh (15x+0)+0 0*Tanh(15x+0)+0 0.25*Tanh (15x-7.5)+0.25 0.5*Tanh (15x-7.5)+0.5 

*where x in the equations represents the variable “policies toward alternative fuels”. 

 

Table B.3 – Equations for policies toward increasing the percentage of biodiesel in diesel blend*. 
Fuels BAU Setup 1 Setup 2 

Diesel 0*Tanh(15x+0)+0.88 -0.03*Tanh(15x-7.5)+0.85 -0.09*Tanh(15x-7.5)+0.79 

Biodiesel 0*Tanh(15x+0)+0.12 0.03*Tanh(15x-7.5)+0.15 0.09*Tanh(15x-7.5)+0.21 

*where x in the equations represents the variable “policies toward alternative fuels”. 
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C. Appendix C – Model results 

This appendix presents the results of the total freight emissions, the main output of the simulation model developed in Chapter 4. 

     Table C.1 – Results of total freight emissions in Scenarios collection 1 (Scenarios 1-8).    
Time (Year) Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

2020 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 

2021 258,749,920 258,974,432 261,473,872 258,974,496 258,974,496 258,974,496 258,974,496 258,974,496 

2022 444,034,112 444,490,720 449,576,480 444,491,168 444,491,136 444,491,136 444,491,168 444,491,136 

2023 635,768,832 636,463,872 644,225,152 636,467,328 636,467,136 636,467,264 636,467,328 636,467,200 

2024 834,172,992 835,101,120 845,624,384 835,127,488 835,126,592 835,127,744 835,127,616 835,126,656 

2025 1,039,434,688 1,040,500,672 1,053,830,976 1,040,702,400 1,040,696,512 1,040,705,088 1,040,702,400 1,040,695,424 

2026 1,251,465,088 1,251,901,696 1,267,755,136 1,253,418,624 1,253,379,712 1,253,439,744 1,253,415,680 1,253,363,328 

2027 1,468,412,288 1,463,168,000 1,479,145,088 1,473,425,024 1,473,156,224 1,473,579,776 1,473,408,128 1,473,054,336 

2028 1,683,982,336 1,654,641,536 1,661,738,496 1,700,513,024 1,699,032,960 1,701,379,840 1,700,599,552 1,699,011,712 

2029 1,897,067,136 1,822,409,856 1,810,240,000 1,934,094,208 1,928,984,448 1,937,098,880 1,935,185,792 1,931,289,600 

2030 2,114,253,824 1,985,935,232 1,950,481,536 2,174,042,112 2,162,206,464 2,180,994,304 2,177,768,960 2,171,141,376 

2031 2,338,436,608 2,153,433,088 2,093,313,536 2,420,583,936 2,398,826,752 2,433,299,712 2,428,769,280 2,419,256,832 

2032 2,570,343,168 2,326,514,432 2,240,787,712 2,673,704,960 2,638,304,000 2,694,136,320 2,688,505,088 2,675,998,976 

2033 2,810,313,472 2,505,587,456 2,393,350,400 2,933,642,752 2,880,750,336 2,963,341,056 2,957,284,096 2,941,678,848 

2034 3,058,637,312 2,690,890,752 2,551,218,688 3,200,939,008 3,127,059,200 3,240,149,504 3,235,421,696 3,216,609,280 

2035 3,315,607,552 2,882,645,504 2,714,582,784 3,476,140,544 3,378,096,384 3,522,776,064 3,523,243,776 3,501,112,320 

2036 3,581,525,248 3,081,076,736 2,883,635,200 3,759,532,800 3,633,969,664 3,808,029,696 3,821,087,488 3,795,521,536 

2037 3,856,701,952 3,286,417,408 3,058,573,568 4,051,093,504 3,893,887,744 4,090,599,424 4,129,302,016 4,100,182,016 

2038 4,141,459,968 3,498,907,648 3,239,603,456 4,351,167,488 4,158,061,056 4,365,820,416 4,448,248,320 4,415,450,112 

2039 4,436,133,376 3,718,796,800 3,426,936,320 4,660,390,400 4,427,544,576 4,631,850,496 4,778,299,904 4,741,696,000 

2040 4,741,066,752 3,946,342,144 3,620,792,320 4,979,362,304 4,703,312,384 4,889,165,312 5,119,843,840 5,079,301,632 

2041 5,056,617,472 4,181,810,688 3,821,398,016 5,308,423,168 4,985,596,928 5,138,551,808 5,473,280,000 5,428,661,760 

2042 5,383,155,712 4,425,477,632 4,028,988,672 5,647,713,280 5,273,985,024 5,378,867,200 5,839,022,080 5,790,187,008 

2043 5,721,063,936 4,677,629,440 4,243,807,232 5,997,691,904 5,568,962,560 5,609,763,840 6,217,499,648 6,164,299,776 

2044 6,070,737,408 4,938,560,512 4,466,105,856 6,359,033,856 5,871,623,680 5,832,052,736 6,609,155,072 6,551,438,848 

2045 6,432,586,240 5,208,577,024 4,696,144,896 6,732,359,680 6,182,893,568 6,047,348,736 7,014,447,616 6,952,058,368 

2046 6,807,034,368 5,487,995,392 4,934,193,152 7,118,115,328 6,503,148,032 6,257,054,720 7,433,852,416 7,366,626,304 

2047 7,194,520,576 5,777,142,784 5,180,530,688 7,516,646,912 6,832,392,192 6,461,139,968 7,867,859,968 7,795,629,568 

2048 7,595,499,008 6,076,358,144 5,435,445,248 7,928,479,232 7,171,169,280 6,660,126,720 8,316,979,712 8,239,570,432 

2049 8,010,438,656 6,385,991,680 5,699,235,328 8,354,265,600 7,520,367,104 6,855,054,848 8,781,736,960 8,698,969,088 

2050 8,439,826,432 6,706,406,400 5,972,210,688 8,794,621,952 7,880,744,960 7,047,328,768 9,262,676,992 9,174,363,136 
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  Table C.2 – Results of total freight emissions in Scenarios collection 2 (Scenarios 9-17).    
Time (Year) Scenario 9 Scenario 10 Scenario 11 Scenario 12 Scenario 13 Scenario 14 Scenario 15 Scenario 16 Scenario 17 

2020 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 

2021 258,749,920 258,749,920 258,749,920 258,974,432 258,974,432 258,974,432 261,473,872 261,473,872 261,473,872 

2022 444,034,112 444,034,080 444,034,080 444,490,688 444,490,688 444,490,688 449,576,480 449,576,448 449,576,448 

2023 635,768,768 635,768,640 635,768,768 636,463,808 636,463,616 636,463,744 644,225,088 644,224,960 644,225,024 

2024 834,172,416 834,171,520 834,172,672 835,100,608 835,099,648 835,100,800 845,623,872 845,622,912 845,624,064 

2025 1,039,431,232 1,039,425,280 1,039,433,856 1,040,497,216 1,040,491,328 1,040,499,904 1,053,827,456 1,053,821,568 1,053,830,144 

2026 1,251,442,048 1,251,403,392 1,251,463,040 1,251,879,168 1,251,841,280 1,251,899,776 1,267,732,608 1,267,694,592 1,267,753,088 

2027 1,468,261,504 1,468,007,808 1,468,407,168 1,463,034,752 1,462,810,752 1,463,163,136 1,479,018,496 1,478,805,376 1,479,140,352 

2028 1,683,282,816 1,682,106,752 1,683,970,176 1,654,251,264 1,653,594,880 1,654,631,808 1,661,425,920 1,660,899,584 1,661,729,408 

2029 1,895,061,120 1,891,688,064 1,897,040,128 1,821,771,904 1,820,697,344 1,822,392,960 1,809,770,752 1,808,979,200 1,810,223,616 

2030 2,109,871,744 2,102,502,656 2,114,190,848 1,985,044,480 1,983,540,224 1,985,905,664 1,949,859,072 1,948,804,096 1,950,451,200 

2031 2,330,235,904 2,316,442,880 2,338,269,696 2,152,226,560 2,150,182,912 2,153,377,792 2,092,526,208 2,091,182,848 2,093,257,856 

2032 2,556,373,248 2,532,869,888 2,569,838,592 2,324,200,448 2,320,275,712 2,326,307,072 2,239,826,176 2,238,167,040 2,240,683,264 

2033 2,788,466,944 2,751,692,032 2,808,795,648 2,500,627,968 2,492,211,968 2,504,714,496 2,391,873,024 2,389,297,408 2,393,008,384 

2034 3,026,986,752 2,973,650,176 3,054,471,424 2,681,673,216 2,665,994,496 2,688,064,256 2,548,188,416 2,542,885,120 2,549,724,928 

2035 3,272,438,016 3,199,547,136 3,305,319,424 2,867,684,608 2,842,108,928 2,875,140,352 2,708,751,872 2,698,473,984 2,709,594,880 

2036 3,525,095,424 3,429,515,008 3,558,432,768 3,058,872,064 3,020,617,216 3,063,705,088 2,873,644,032 2,855,823,872 2,870,369,792 

2037 3,784,914,432 3,662,760,960 3,808,695,808 3,255,200,000 3,200,854,784 3,249,403,904 3,042,711,040 3,014,004,480 3,027,985,152 

2038 4,052,224,256 3,899,504,896 4,051,772,416 3,456,969,728 3,383,076,096 3,428,624,384 3,216,240,640 3,173,281,024 3,179,892,736 

2039 4,327,607,808 4,140,694,784 4,286,633,472 3,664,634,624 3,567,986,688 3,601,223,424 3,394,701,824 3,334,439,168 3,325,916,160 

2040 4,611,590,656 4,387,161,088 4,514,164,224 3,878,572,032 3,756,145,152 3,768,274,432 3,578,429,952 3,497,973,760 3,466,555,904 

2041 4,904,478,720 4,639,132,672 4,734,757,888 4,099,000,832 3,947,703,552 3,930,380,544 3,767,591,424 3,663,970,560 3,602,041,600 

2042 5,206,383,616 4,896,218,112 4,946,791,936 4,326,005,760 4,142,360,576 4,085,677,568 3,962,204,416 3,832,032,512 3,731,264,768 

2043 5,517,756,928 5,158,947,328 5,149,971,968 4,560,035,840 4,340,785,152 4,233,788,672 4,162,724,864 4,002,907,392 3,855,124,992 

2044 5,839,223,296 5,428,309,504 5,345,754,624 4,801,577,984 4,543,723,520 4,376,407,040 4,369,607,168 4,177,293,824 3,974,405,888 

2045 6,171,308,544 5,705,051,136 5,535,816,704 5,050,986,496 4,751,622,656 4,514,991,616 4,583,159,808 4,355,577,344 4,089,774,080 

2046 6,514,403,840 5,989,523,968 5,721,008,128 5,308,542,976 4,964,741,632 4,650,508,288 4,803,610,112 4,537,973,760 4,201,860,096 

2047 6,868,814,336 6,281,743,872 5,900,834,304 5,574,480,896 5,183,105,536 4,781,977,088 5,031,140,864 4,724,472,320 4,310,632,960 

2048 7,235,043,840 6,582,264,320 6,075,798,528 5,849,262,080 5,407,330,816 4,909,518,848 5,266,199,552 4,915,712,000 4,417,121,280 

2049 7,613,689,344 6,891,866,624 6,247,312,384 6,133,350,400 5,637,976,064 5,034,462,208 5,509,188,096 5,112,136,192 4,521,504,768 

2050 8,005,277,696 7,211,166,720 6,416,720,384 6,427,107,328 5,875,418,112 5,157,886,464 5,760,417,792 5,314,069,504 4,624,198,656 
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Table C.3 – Results of total freight emissions in Scenarios collection 3 (Scenarios 18-26).    
Time (Year) Scenario 18 Scenario 19 Scenario 20 Scenario 21 Scenario 22 Scenario 23 Scenario 24 Scenario 25 Scenario 26 

2020 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 

2021 258,749,920 258,749,920 258,749,920 258,974,432 258,974,432 258,974,432 261,473,856 261,473,856 261,473,856 

2022 444,034,080 444,034,080 444,034,080 444,490,656 444,490,656 444,490,656 449,576,448 449,576,448 449,576,448 

2023 635,768,576 635,768,576 635,768,576 636,463,424 636,463,424 636,463,424 644,225,024 644,225,024 644,225,024 

2024 834,171,008 834,171,008 834,170,944 835,098,176 835,098,112 835,097,984 845,624,000 845,624,000 845,624,000 

2025 1,039,420,416 1,039,420,288 1,039,419,904 1,040,480,000 1,040,479,616 1,040,478,592 1,053,829,952 1,053,829,888 1,053,829,824 

2026 1,251,361,408 1,251,360,384 1,251,357,824 1,251,756,928 1,251,754,112 1,251,747,328 1,267,752,448 1,267,752,448 1,267,752,192 

2027 1,467,717,888 1,467,708,032 1,467,688,576 1,462,250,624 1,462,225,408 1,462,175,488 1,479,138,688 1,479,138,432 1,479,137,920 

2028 1,680,898,048 1,680,831,872 1,680,731,648 1,651,321,856 1,651,180,800 1,650,954,112 1,661,725,568 1,661,724,928 1,661,723,648 

2029 1,889,249,536 1,888,998,144 1,888,698,240 1,815,826,432 1,815,528,192 1,815,064,320 1,810,215,808 1,810,214,784 1,810,212,864 

2030 2,099,808,384 2,099,184,896 2,098,585,856 1,975,801,728 1,975,268,608 1,974,472,576 1,950,434,688 1,950,433,152 1,950,430,592 

2031 2,315,319,296 2,314,081,536 2,313,179,648 2,138,499,072 2,136,943,232 2,135,556,352 2,093,218,816 2,093,215,488 2,093,211,648 

2032 2,535,723,776 2,533,521,408 2,532,436,736 2,301,890,048 2,298,219,776 2,296,411,904 2,240,510,976 2,240,446,976 2,240,438,784 

2033 2,760,984,320 2,757,499,648 2,756,344,576 2,464,384,256 2,457,746,432 2,455,804,928 2,392,177,920 2,391,912,448 2,391,912,704 

2034 2,991,596,800 2,986,661,888 2,985,482,752 2,626,613,504 2,616,707,072 2,614,782,464 2,547,229,440 2,546,601,472 2,546,644,480 

2035 3,228,117,760 3,221,700,608 3,220,494,080 2,789,468,672 2,776,345,344 2,774,471,680 2,703,693,056 2,702,614,528 2,702,736,384 

2036 3,470,705,664 3,462,940,928 3,461,707,776 2,952,899,328 2,936,913,152 2,935,090,176 2,858,325,760 2,857,095,680 2,857,327,360 

2037 3,719,042,560 3,710,219,264 3,708,993,536 3,115,441,920 3,097,294,080 3,095,581,440 3,005,720,576 3,005,232,384 3,005,615,360 

2038 3,973,493,504 3,963,859,712 3,962,656,000 3,277,734,912 3,258,035,968 3,256,440,320 3,142,015,488 3,142,977,792 3,143,476,480 

2039 4,234,926,848 4,224,641,024 4,223,456,512 3,441,583,104 3,420,756,736 3,419,292,928 3,268,086,016 3,271,045,376 3,271,723,264 

2040 4,504,045,056 4,493,198,848 4,492,019,200 3,607,911,168 3,586,228,224 3,584,888,064 3,385,968,384 3,391,424,000 3,392,333,824 

2041 4,781,322,240 4,769,966,080 4,768,775,168 3,777,257,984 3,754,811,648 3,753,534,208 3,498,114,048 3,506,431,232 3,507,525,120 

2042 5,066,949,632 5,055,132,160 5,053,926,912 3,949,385,728 3,926,246,144 3,924,992,768 3,605,378,560 3,616,089,600 3,617,155,840 

2043 5,361,273,856 5,349,034,496 5,347,819,008 4,124,691,712 4,100,898,048 4,099,649,280 3,707,246,848 3,719,483,392 3,720,388,864 

2044 5,664,920,064 5,652,288,000 5,651,069,952 4,304,038,912 4,279,628,800 4,278,393,344 3,804,730,112 3,817,952,000 3,818,735,616 

2045 5,978,458,112 5,965,459,456 5,964,240,896 4,487,943,168 4,462,973,952 4,461,764,608 3,899,055,872 3,913,070,080 3,913,782,016 

2046 6,302,350,336 6,289,012,736 6,287,786,496 4,676,823,552 4,651,354,112 4,650,164,224 3,991,816,704 4,006,616,320 4,007,264,768 

2047 6,636,934,144 6,623,306,752 6,622,074,368 4,870,756,352 4,844,867,072 4,843,690,496 4,083,699,200 4,099,002,624 4,099,557,632 

2048 6,982,564,352 6,968,706,048 6,967,476,736 5,069,799,936 5,043,582,976 5,042,428,928 4,174,331,648 4,189,792,256 4,190,277,120 

2049 7,339,730,432 7,325,690,368 7,324,477,952 5,274,219,520 5,247,737,344 5,246,608,896 4,263,925,248 4,279,352,064 4,279,802,368 

2050 7,708,978,688 7,694,792,192 7,693,601,792 5,484,506,112 5,457,808,896 5,456,715,264 4,353,200,128 4,368,532,480 4,368,970,752 
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Table C.4 – Results of total freight emissions in Scenarios collection 4 (Scenarios 27-32).    
Time (Year) Scenario 27 Scenario 28 Scenario 29 Scenario 30 Scenario 31 Scenario 32 

2020 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 79,700,000 

2021 258,749,616 258,749,936 258,973,584 258,974,464 261,472,736 261,473,888 

2022 443,900,032 444,034,208 444,119,520 444,491,040 449,077,568 449,576,896 

2023 624,493,632 635,769,856 605,512,768 636,466,944 602,856,128 644,229,248 

2024 796,481,216 834,181,440 733,291,520 835,126,848 708,121,728 845,658,496 

2025 972,212,544 1,039,501,056 863,171,776 1,040,702,656 813,634,560 1,054,099,456 

2026 1,152,066,944 1,251,968,384 994,064,256 1,253,432,832 919,639,168 1,269,793,024 

2027 1,336,133,632 1,471,830,144 1,124,362,368 1,473,560,064 1,019,459,456 1,492,982,784 

2028 1,524,817,792 1,699,337,344 1,254,141,824 1,701,324,544 1,111,270,912 1,723,905,280 

2029 1,718,975,488 1,934,738,688 1,385,038,080 1,936,943,744 1,198,665,856 1,962,762,752 

2030 1,919,189,120 2,178,261,248 1,518,238,720 2,180,558,080 1,284,297,344 2,209,648,896 

2031 2,125,626,368 2,430,055,680 1,653,953,664 2,432,080,896 1,368,185,600 2,464,340,736 

2032 2,338,132,480 2,690,050,816 1,791,235,072 2,690,792,704 1,447,534,592 2,725,727,232 

2033 2,557,005,312 2,957,613,824 1,930,362,752 2,954,411,008 1,522,238,208 2,990,531,072 

2034 2,783,099,904 3,230,968,576 2,073,068,160 3,217,526,528 1,596,316,928 3,251,282,432 

2035 3,016,881,408 3,507,007,232 2,219,976,704 3,471,243,776 1,670,982,656 3,496,289,024 

2036 3,258,414,336 3,783,121,920 2,370,815,232 3,708,449,280 1,745,064,576 3,716,144,640 

2037 3,507,522,560 4,059,707,392 2,524,465,920 3,930,564,864 1,815,348,480 3,911,973,888 

2038 3,764,515,328 4,339,317,248 2,681,234,688 4,144,604,160 1,882,102,144 4,093,886,720 

2039 4,030,223,360 4,624,276,480 2,842,804,224 4,355,985,408 1,949,431,040 4,271,215,616 

2040 4,305,102,336 4,916,075,520 3,009,649,408 4,567,454,720 2,018,127,360 4,445,595,648 

2041 4,589,317,632 5,215,603,200 3,181,555,456 4,780,257,280 2,087,158,528 4,614,707,200 

2042 4,882,898,944 5,523,222,528 3,357,820,160 4,994,348,544 2,154,286,592 4,775,599,104 

2043 5,186,214,912 5,839,269,888 3,538,801,408 5,209,739,776 2,219,964,416 4,926,423,040 

2044 5,499,968,512 6,164,208,128 3,725,761,792 5,426,958,848 2,287,111,680 5,067,566,080 

2045 5,824,617,472 6,498,626,560 3,919,105,280 5,646,937,088 2,356,249,088 5,201,404,928 

2046 6,160,468,992 6,843,103,232 4,118,820,864 5,870,482,944 2,426,835,712 5,329,761,792 

2047 6,507,782,656 7,198,022,144 4,324,692,480 6,097,668,608 2,497,806,848 5,452,154,880 

2048 6,866,979,840 7,563,819,520 4,537,049,088 6,328,728,576 2,569,465,344 5,568,507,904 

2049 7,238,636,032 7,941,024,256 4,756,646,400 6,564,244,992 2,643,244,032 5,679,786,496 

2050 7,623,225,856 8,330,252,800 4,983,853,568 6,805,086,720 2,719,496,192 5,788,018,176 
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Table C.5 – Results of total freight emissions in Scenarios collection 5 (Scenarios 33-35).    
Time (Year) Scenario 33 Scenario 34 Scenario 35 

2020 79,700,000 79,700,000 79,700,000 

2021 258,513,136 264,831,968 261,656,784 

2022 436,754,400 464,510,272 450,511,232 

2023 614,422,848 679,874,368 645,741,824 

2024 791,499,904 912,129,408 846,435,392 

2025 967,837,952 1,162,385,280 1,055,254,976 

2026 1,142,369,024 1,430,372,480 1,270,240,384 

2027 1,308,535,296 1,706,306,688 1,485,756,160 

2028 1,446,865,152 1,954,578,432 1,673,149,056 

2029 1,555,198,080 2,165,094,912 1,824,209,280 

2030 1,653,698,560 2,372,384,256 1,967,831,168 

2031 1,750,309,888 2,592,408,320 2,116,818,816 

2032 1,846,362,368 2,829,010,176 2,270,925,056 

2033 1,941,999,232 3,083,192,576 2,431,215,104 

2034 2,037,144,448 3,354,620,160 2,595,102,464 

2035 2,131,635,456 3,641,093,888 2,761,254,144 

2036 2,224,937,472 3,937,979,392 2,926,139,904 

2037 2,314,372,096 4,237,955,584 3,087,636,992 

2038 2,397,991,424 4,535,185,920 3,242,442,752 

2039 2,475,913,472 4,828,456,448 3,389,725,184 

2040 2,548,854,784 5,118,467,584 3,531,648,256 

2041 2,617,122,048 5,406,201,856 3,667,932,672 

2042 2,679,697,152 5,690,729,984 3,798,714,624 

2043 2,737,222,144 5,972,313,088 3,924,792,320 

2044 2,790,641,408 6,253,216,256 4,046,934,272 

2045 2,840,671,232 6,535,501,824 4,164,375,808 

2046 2,887,589,632 6,821,433,856 4,277,666,816 

2047 2,930,960,640 7,111,908,352 4,387,766,784 

2048 2,971,591,168 7,407,932,928 4,495,445,504 

2049 3,009,996,032 7,711,698,944 4,601,151,488 

2050 3,046,544,896 8,025,438,720 4,705,462,784 

 


